2,850 research outputs found

    Triple junction at the triple point resolved on the individual particle level

    Full text link
    At the triple point of a repulsive screened Coulomb system, a face-centered-cubic (fcc) crystal, a body-centered-cubic (bcc) crystal and a fluid phase coexist. At their intersection, these three phases form a liquid groove, the triple junction. Using confocal microscopy, we resolve the triple junction on a single particle level in a model system of charged PMMA colloids in a nonpolar solvent. The groove is found to be extremely deep and the incommensurate solid-solid interface to be very broad. Thermal fluctuations hence appear to dominate the solid-solid interface. This indicates a very low interfacial energy. The fcc-bcc interfacial energy is quantitatively determined based on Young's equation and, indeed, it is only about 1.3 times higher than the fcc-fluid interfacial energy close to the triple point

    Grain Boundary Scars and Spherical Crystallography

    Full text link
    We describe experimental investigations of the structure of two-dimensional spherical crystals. The crystals, formed by beads self-assembled on water droplets in oil, serve as model systems for exploring very general theories about the minimum energy configurations of particles with arbitrary repulsive interactions on curved surfaces. Above a critical system size we find that crystals develop distinctive high-angle grain boundaries, or scars, not found in planar crystals. The number of excess defects in a scar is shown to grow linearly with the dimensionless system size. The observed slope is expected to be universal, independent of the microscopic potential.Comment: 4 pages, 3 eps figs (high quality images available from Mark Bowick

    Study of effects of fuel properties in turbine-powered business aircraft

    Get PDF
    Increased interest in research and technology concerning aviation turbine fuels and their properties was prompted by recent changes in the supply and demand situation of these fuels. The most obvious change is the rapid increase in fuel price. For commercial airplanes, fuel costs now approach 50 percent of the direct operating costs. In addition, there were occasional local supply disruptions and gradual shifts in delivered values of certain fuel properties. Dwindling petroleum reserves and the politically sensitive nature of the major world suppliers make the continuation of these trends likely. A summary of the principal findings, and conclusions are presented. Much of the material, especially the tables and graphs, is considered in greater detail later. The economic analysis and examination of operational considerations are described. Because some of the assumptions on which the economic analysis is founded are not easily verified, the sensitivity of the analysis to alternates for these assumptions is examined. The data base on which the analyses are founded is defined in a set of appendices

    Resolving long-range spatial correlations in jammed colloidal systems using photon correlation imaging

    Get PDF
    We introduce a new dynamic light scattering method, termed photon correlation imaging, which enables us to resolve the dynamics of soft matter in space and time. We demonstrate photon correlation imaging by investigating the slow dynamics of a quasi two-dimensional coarsening foam made of highly packed, deformable bubbles and a rigid gel network formed by dilute, attractive colloidal particles. We find the dynamics of both systems to be determined by intermittent rearrangement events. For the foam, the rearrangements extend over a few bubbles, but a small dynamical correlation is observed up to macroscopic length scales. For the gel, dynamical correlations extend up to the system size. These results indicate that dynamical correlations can be extremely long-ranged in jammed systems and point to the key role of mechanical properties in determining their nature.Comment: Published version (Phys. Rev. Lett. 102, 085702 (2009)) The Dynamical Activity Mapsprovided as Supplementary Online Material are also available on http://w3.lcvn.univ-montp2.fr/~lucacip/dam/movies.ht

    Avalanche statistics and time-resolved grain dynamics for a driven heap

    Get PDF
    We probe the dynamics of intermittent avalanches caused by steady addition of grains to a quasi-two dimensional heap. To characterize the time-dependent average avalanche flow speed v(t), we image the top free surface. To characterize the grain fluctuation speed dv(t), we use Speckle-Visibility Spectroscopy. During an avalanche, we find that the fluctuation speed is approximately one-tenth the average flow speed, and that these speeds are largest near the beginning of an event. We also find that the distribution of event durations is peaked, and that event sizes are correlated with the time interval since the end of the previous event. At high rates of grain addition, where successive avalanches merge into smooth continuous flow, the relationship between average and fluctuation speeds changes to dv Sqrt[v]

    Microrheology probes length scale dependent rheology

    Get PDF
    We exploit the power of microrheology to measure the viscoelasticity of entangled F-actin solutions at different length scales from 1 to 100 mu m over a wide frequency range. We compare the behavior of single probe-particle motion to that of the correlated motion of two particles. By varying the average length of the filaments, we identify fluctuations that dissipate diffusively over the filament length. These provide an important relaxation mechanism of the elasticity between 0.1 and 30 rad/sec

    Speckle visibility spectroscopy and variable granular fluidization

    Get PDF
    We introduce a dynamic light scattering technique capable of resolving motion that changes systematically, and rapidly, with time. It is based on the visibility of a speckle pattern for a given exposure duration. Applying this to a vibrated layer of glass beads, we measure the granular temperature and its variation with phase in the oscillation cycle. We observe several transitions involving jammed states, where the grains are at rest during some portion of the cycle. We also observe a two-step decay of the temperature on approach to jamming.Comment: 4 pages, 4 figures, experimen

    Activity driven fluctuations in living cells

    Full text link
    We propose a model for the dynamics of a probe embedded in a living cell, where both thermal fluctuations and nonequilibrium activity coexist. The model is based on a confining harmonic potential describing the elastic cytoskeletal matrix, which undergoes random active hops as a result of the nonequilibrium rearrangements within the cell. We describe the probe's statistics and we bring forth quantities affected by the nonequilibrium activity. We find an excellent agreement between the predictions of our model and experimental results for tracers inside living cells. Finally, we exploit our model to arrive at quantitative predictions for the parameters characterizing nonequilibrium activity, such as the typical time scale of the activity and the amplitude of the active fluctuations.Comment: 6 pages, 4 figure

    Herschel-Bulkley rheology from lattice kinetic theory of soft-glassy materials

    Full text link
    We provide a clear evidence that a two species mesoscopic Lattice Boltzmann (LB) model with competing short-range attractive and mid-range repulsive interactions supports emergent Herschel-Bulkley (HB) rheology, i.e. a power-law dependence of the shear-stress as a function of the strain rate, beyond a given yield-stress threshold. This kinetic formulation supports a seamless transition from flowing to non-flowing behaviour, through a smooth tuning of the parameters governing the mesoscopic interactions between the two species. The present model may become a valuable computational tool for the investigation of the rheology of soft-glassy materials on scales of experimental interest.Comment: 5 figure
    corecore