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Speckle Visibility Spectroscopy and Variable Granular Fluidization

Abstract
We introduce a dynamic light scattering technique capable of resolving motion that changes systematically,
and rapidly, with time. It is based on the visibility of a speckle pattern for a given exposure duration. Applying
this to a vibrated layer of glass beads, we measure the granular temperature and its variation with phase in the
oscillation cycle. We observe several transitions involving jammed states, where the grains are at rest during
some portion of the cycle. We also observe a two-step decay of the temperature on approach to jamming.
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SpeckleVisibility Spectroscopy and Variable Granular Fluidization
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We introduce a dynamic light scattering technique capable of resolving motion that changes
systematically, and rapidly, with time. It is based on the visibility of a speckle pattern for a given
exposure duration. Applying this to a vibrated layer of glass beads, we measure the granular
temperature and its variation with phase in the oscillation cycle. We observe several transitions
involving jammed states, where the grains are at rest during some portion of the cycle. We also observe
a two-step decay of the temperature on approach to jamming.

DOI: 10.1103/PhysRevLett.90.184302 PACS numbers: 45.70.Mg, 78.35.+c, 81.05.Rm

Awealth of spectacular phenomena occur when granu-
lar materials are subjected to vertical vibration [1,2].
Shallow layers exhibit period doubling and pattern for-
mation; deep layers exhibit heaping, convection, and log-
arithmically slow compaction. It is relevant to ask: What
grain-scale physics causes this intriguing macroscopic
behavior? Since the driving is generally at high amplitude
but low frequency, the dynamics vary across the oscilla-
tion cycle. At first, the grains are jammed [3,4], com-
pletely at rest in some random packing configuration.
When the downward acceleration exceeds �g, the grains
are launched upward from the plate. The layer expands as
the grains collide and move about randomly. Soon they
crash back into the bottom plate and pick up energy from
this impact. Finally, they come to rest after rattling away
energy by inelastic collisions. This approach to jamming
can be accompanied by clustering and ‘‘inelastic col-
lapse,’’ a finite time singularity where the collision rate
diverges and the collision length vanishes [5,6]. This
regime is especially significant because granular hydro-
dynamics [7–9] and statistical mechanics, extended to an
athermal system, both break down.

Unfortunately, the above sequence has not been experi-
mentally accessible. Because of multiple light scattering,
video imaging is restricted to dilute granular gasses or
surface behavior [10]. Even then, the spatial resolution
becomes larger than the collision length as the grains
come to rest. This limitation also holds for magnetic
resonance imaging [11,12], x-ray microtomography
[13], and positron emission particle tracking [14].
Furthermore, none is fast enough to capture the high
collision rates when the grains are barely fluidized. By
contrast, diffusing-wave spectroscopy (DWS) [15] is a
dynamic light scattering (DLS) [16] method that applies
to bulk granular media. It has superior spatial and tem-
poral resolution and can be extended to unsteady dynam-
ics [17]. However, it is based on temporal correlation
functions, implicitly assuming that all times are statisti-
cally equivalent; therefore, it is not appropriate for peri-
odic or aging systems. Altogether, the leading probe of

dynamics in vibrated 3D granular systems currently is an
NMR technique, where individual grains in a small
highly fluidized sample were tracked to within about
150 �m and 1.4 ms [12].

In this Letter, we introduce a new DLS technique and
use it to study grain dynamics across the oscillation cycle.
The resolution is limited by the wavelength of light and
by the speed of a fast CCD camera. Taking advantage of
multiple light scattering, we achieve a resolution of �
10 nm and � 50 �s. With this advance, we unlock re-
gimes where the grains barely move. In particular, we
observe three dynamic transitions: the onset of fluidiza-
tion, where the acceleration amplitude just exceeds g; a
jamming transition, where the grains crash into the plate
and then come to rest; and a transition to continuous
fluidization, where the grains do not jam at any point
during the cycle. In contrast, the NMR study of Ref. [12]
was conducted far above this point, where granular hy-
drodynamics is applicable in the bulk. Our transitions all
involve a jammed state, and therefore cannot be captured
by granular hydrodynamics. Since our observations quan-
tify the microscopics that underlie a host of intriguing
phenomena, they present a theoretical challenge.

Our granular system consists of 780� 35 �m diameter
glass beads, approximately 12 layers deep in a 10�
10 cm2 box with a flat transparent bottom, vertical walls,
and an open top. This is mounted on a shake table, which
in turn is leveled on an optical bench. Two three-axis
accelerometers monitor the quality and peak acceleration,
a� � �g, of the vertical sinusoidal oscillations. All data
are taken at frequency f � 10 Hz. We define the phase to
be � � 0 when the plate is at height z � 0 and moving
upward. Properly leveled, we observe no discernible
heaping, pattern formation, or convection across the range
of amplitudes studied, 0< �< 2:2.

To measure grain motion, we introduce a method that
we call ‘‘speckle visibility spectroscopy’’ (SVS). As
shown in Fig. 1(a), we illuminate the grains from above
with a � 1 cm diameter beam of a 100 mW frequency-
doubled Nd-YAG laser (	 � 532 nm). Photons perform a
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random walk with transport mean free path of � 4
grains. Since the sample is 12 layers deep, about 1

3 of the
photons reach the bottom plate, and the rest are back-
scattered after a few events. The backscattered light
forms a speckle pattern in the far field, which we detect
using a digital line scan CCD camera (Basler-160:
1024 pixels, 8 bit deep), and no intervening optics except
a 532 nm filter. The sample-CCD distance is � 20 cm,
such that the speckle size is comparable to the pixel size
(10 �m). Therefore, as the grains move and the speckle
pattern changes, large intensity fluctuations occur at each
pixel. For the speckle pattern to be visible, however, the
exposure time of the CCD must be short compared to the
time scale for speckle fluctuations. If the exposure time is
longer, then the speckle blurs out and the same average
intensity is recorded at each pixel. This is the essence of
SVS. It is illustrated qualitatively in Fig. 1(b) by the
space-time plot of speckle vs phase during the cycle.
When the grains are at rest on the plate, the speckle is
clearly visible. When the grains are fluidized, the speckle
is blurry. The speckle is least visible just after impact,
where rapid grain motion is excited by the sudden injec-
tion of energy. This is reminiscent of ‘‘laser speckle
photography,’’ where the absence of speckle in a laser-
illuminated scene indicates motion [18,19]. And it is
similar to even earlier work, where the intensity distri-
bution at a single speckle was considered vs integration
time [20].

The key measurable quantity in SVS is the variance of
intensity across the pixels. For an exposure duration T,
each of the N pixels reports a time-integrated intensity,
Si;T �

R
T
0 Ii�t	dt=T. The ensemble-averaged intensity

moments are computed as hIiT �
P

N
i�1 Si;T=N, hI2iT �P

N
i�1 S

2
i;T=N, etc. If there are enough speckles, then the

former is independent of T and the subscript may be
dropped. By contrast, hI2iT depends on T and indicates
the visibility of the speckles to the extent that it exceeds
hIi2. To quantify visibility on a scale of 0–1, we define a
normalized variance:

V2�T	 � �hI2iT=hIi2 � 1=�: (1)

The factor 1=� is roughly the number of speckles per
pixel and is determined experimentally by measuring the
system at rest. Figure 1(c) shows an example of V2�T	 vs
phase during the cycle, for a fixed exposure of T �
100 �s. It is closer to 0 when the grains are moving
rapidly, and closer to 1 when the grains are coming to rest.

To relate the variance to grain motion, note that Eq. (1)
involves ensemble averages, rather than time averages.
Therefore, the Siegert relation [16] holds, giving hI2iT �
h
R
T
0

R
T
0 Ii�t

0	Ii�t00	dt0dt00=T2ii � hIi2
R
T
0

R
T
0 �1 � �jg1�t0 �

t00	j2dt0dt00=T2. Here, � is the same as above, and g1�t	 is
the normalized electric field autocorrelation. Since g1�t	
is even, the double integral simplifies and we arrive at the
fundamental equation of SVS:

V2�T	 � 2
Z T

0
�1� t=T	jg1�t	j

2dt=T: (2)

The variance is thus a weighted average of jg1�t	j2 over
the exposure time T. Both functions are 1 at short times,
and 0 at long times. Given g1�t	 from SVS measurements,
the scattering site motion may then be deduced by stan-
dard DLS practice. For random ballistic motion of aver-
age speed �v, the theory of DWS for backscattered light
gives g1�t	 � exp���t	 with � � 4��v=	 [15]. The cor-
responding variance is

V2�T	 � 2�exp��2�T	 � �1� 2�T	=�2�T	2: (3)

At short times, the initial decay is linear: V2�T	 � 1�
2
3�T; at long times, it is a power law: V2�T	 � 1=��T	.
The heavy weighting in Eq. (2) near t � 0 slows the
decay, aiding in the measurement of fast processes.

FIG. 1. (a) Theoretical position of the cell, bead layer, and
their difference (5�) vs phase � for a sinusoidally oscillated
cell. The particular curves are for � � 1:25 and f � 10 Hz. For
intuition, the bead layer is modeled as a slab with an effective
coefficient of restitution; a value of � � 0:5 is used for the data
shown. The inset shows the optical geometry. (b) A represen-
tative speckle image vs � gathered by the linear CCD for � �
1:25, f � 10 Hz, and T � 100 �s. For clarity, only 200 of
1024 pixels are shown. (c) The averaged normalized variance
V2 of 300 full images versus � for the above settings.
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We now return to Fig. 1, where the grains are vibrated at
f � 10 Hz and � � 1:25, and exploit our SVS method.
Three representative phases in the cycle are marked by
triangles in the V2�100 �s	 data in Fig. 1(c): where the
grain motion is most rapid both in midflight and after
impact and where the grain motion ceases. For each of
these three events, we show V2�T	 vs T in Fig. 2(a). All
data tend toward 1 (0) at short (long) times, as expected,
where the speckle is most (least) visible. The actual
dynamic range of our data is limited by two effects that
are specific to our experiment (not the SVS method).
First, for exposures faster than � 50 �s, our 100 mW
laser produces a signal that is a small fraction of the
0–255 range of the CCD. Therefore, the distribution of
intensities is binned coarsely, which systematically dis-
torts the variance. This limitation could be reduced by a
brighter laser. Second, the macroscopic motion of the
system contributes to the variance, becoming significant
for T ! 1 and/or V2 ! 1. In particular, even if the
grains are at rest, the speckles form a static pattern that
washes as a whole across the CCD pixels. This ‘‘speckle
wash’’ can be seen as a swirling in the space-time plot of
Fig. 1(b).

The reliable portion of the variance data in Fig. 2(a)
compares well with Eq. (3), as shown by the curves. The
form of the decay is therefore consistent with expecta-
tion: the grains appear to undergo random ballistic mo-
tion with some average fluctuation speed �v. For granular
materials, the kinetic energy associated with �v is called
the granular temperature; it is directly proportional to the
decay rate � � 4��v=	. Results for � are shown in
Fig. 2(b) as a function of phase in the cycle. The grains
‘‘heat up’’ both in midflight and from impact. In both
cases, they lose energy through inelastic collisions. About
1
5 cycle (20 ms) after impact, the grains lose their energy
and come to rest in a jammed state. Because of speckle
wash, however, � does not decay to zero but rather to a
readily identifiable baseline. To our knowledge, this is the
first measurement of the bulk granular temperature dur-
ing the collapse. Since ‘‘heat’’ is injected by collision with
the plate, there may be a vertical temperature gradient;
this is averaged over, and sampled fairly uniformly [21],
by the diffusely backscattered photons.

We now repeat the experiment versus �, at constant
f � 10 Hz. A gray scale plot of � is shown in Fig. 3 vs
both � and �. Effectively, this is a phase diagram denot-
ing the relative fluidization of the medium at different
forcing rates and at different points in the cycle. Several
transitions can be observed. First, below � � 1, there is
no fluidization at all. Above � � 1, the grains become
fluidized for some portion of the cycle. In particular, the
grains are launched from the plate when the instanta-
neous acceleration is �g, as denoted by a solid white
curve. The dotted white curve denotes where the grains
crash back down, assuming they undergo simple free fall.
Sometime after the grains land, they lose their energy via
collisions and jam. The onset of both jamming and un-
jamming depend on the driving amplitude. For � > 1:6,
they merge together and the system undergoes a transition

FIG. 2. (a) Variance V2 vs exposure time T for � � 1:25 and
f � 10 Hz at three phases �. The symbols correspond to the
markers in Fig. 1(c). The solid and dashed curves are single
parameter fits to the data denoted by the larger symbols, using
Eq. (3). The data fit by the dashed curve represent the effect of
speckle wash alone, since the grains are at rest on the plate.
The dotted curve assumes diffusive grain motion, g1�t	 �
exp��

�����
�t

p
	, and gives a poor fit. (b) Fitted rates vs phase.

FIG. 3. Gray scale plot of decay rate �, based on fits to Eq. (2),
as a function of both peak acceleration � and phase � in the
oscillation cycle; black � 0, white � 120 kHz. The solid white
curve indicates where the grains are launched, at an instanta-
neous acceleration of �g. The dotted white curve indicates
when a free-fall object would land.
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to continuous fluidization. Though the grains never come
to rest, their dynamics still vary throughout the cycle. As
expected, the motion is fastest (slowest) just after (be-
fore) impact.

Both the process of jamming, and the nature of the
transition to continuous fluidization, may be studied in
terms of the fluctuation speed, �v, vs the time following
impact, �t. These data are extracted from Fig. 3 and
displayed in Fig. 4. For amplitudes 1< �< 1:6, �v
spikes at impact and then decays to a plateau after �
2 ms; the initial decay rate appears to be independent
of �. Following the plateau, �v decays to zero (within
resolution set by speckle wash) as the grains jam up. This
second decay is slower than the first. The temperature
spike, the level of the plateau, and the duration of the
plateau all increase monotonically with �. The impacts
become progressively more violent, until suddenly at � >
1:6 the plateau extends across the entire cycle and the
grains never come to rest. The impacts are no longer as
violent; instead, the grains stay fluidized and �v exhibits
a smoother variation with time.

In conclusion, the use of area detectors for ‘‘multi-
speckle’’ dynamic light scattering is on the rise
[22–25]. The general approach has been to autocorrelate
each pixel and then to average the results afterwards, all
in software. Our new method, speckle variance spectros-
copy (SVS), is dramatically different and offers advan-
tages in terms of both simplicity and applicability. In
effect we have created a ‘‘speckle ensemble correlator’’
in which all averages are explicitly computed ensemble
averages of a single exposure of the CCD camera; neither
time averages, temporal autocorrelations, nor image stor-
age are necessary. While the time resolution of prior
methods is currently no better than � 2 ms, we achieve
� 20 �s. More significantly, we can follow dynamics
that change on equally rapid time scales. This unprece-

dented resolution allows us to capture the transition to
continuous fluidization in Fig. 3 and the two-step decay of
the granular temperature in Fig. 4. With a brighter laser,
and better control of speckle wash, we are poised to study
these and other granular dynamics in greater detail. SVS
also opens a new window for the study of bubble rear-
rangements in coarsening foams, motion and aging in
glassy suspensions, gelation, phase separation, and other
phenomena that exhibit fast or quickly evolving nonsta-
tionary dynamics.

We gratefully acknowledge discussions with M. Giglio,
P.-A. Lemieux, R. P Ojha, P. N. Pusey, T. Usher, and the
support of NSF-0070329.
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FIG. 4. Average fluctuation speed vs time after impact, ex-
tracted from Fig. 3, for different accelerations �. For the solid
curves, all below the transition to continuous fluidization, �v
increases monotonically with driving amplitude. Above the
transition, �v never goes to zero and does not spike as strongly
when the grains impact the plate.
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