We probe the dynamics of intermittent avalanches caused by steady addition of
grains to a quasi-two dimensional heap. To characterize the time-dependent
average avalanche flow speed v(t), we image the top free surface. To
characterize the grain fluctuation speed dv(t), we use Speckle-Visibility
Spectroscopy. During an avalanche, we find that the fluctuation speed is
approximately one-tenth the average flow speed, and that these speeds are
largest near the beginning of an event. We also find that the distribution of
event durations is peaked, and that event sizes are correlated with the time
interval since the end of the previous event. At high rates of grain addition,
where successive avalanches merge into smooth continuous flow, the relationship
between average and fluctuation speeds changes to dv Sqrt[v]