31 research outputs found

    Hormonal Signal Amplification Mediates Environmental Conditions during Development and Controls an Irreversible Commitment to Adulthood

    Get PDF
    Many animals can choose between different developmental fates to maximize fitness. Despite the complexity of environmental cues and life history, different developmental fates are executed in a robust fashion. The nematode Caenorhabditis elegans serves as a powerful model to examine this phenomenon because it can adopt one of two developmental fates (adulthood or diapause) depending on environmental conditions. The steroid hormone dafachronic acid (DA) directs development to adulthood by regulating the transcriptional activity of the nuclear hormone receptor DAF-12. The known role of DA suggests that it may be the molecular mediator of environmental condition effects on the developmental fate decision, although the mechanism is yet unknown. We used a combination of physiological and molecular biology techniques to demonstrate that commitment to reproductive adult development occurs when DA levels, produced in the neuroendocrine XXX cells, exceed a threshold. Furthermore, imaging and cell ablation experiments demonstrate that the XXX cells act as a source of DA, which, upon commitment to adult development, is amplified and propagated in the epidermis in a DAF-12 dependent manner. This positive feedback loop increases DA levels and drives adult programs in the gonad and epidermis, thus conferring the irreversibility of the decision. We show that the positive feedback loop canalizes development by ensuring that sufficient amounts of DA are dispersed throughout the body and serves as a robust fate-locking mechanism to enforce an organism-wide binary decision, despite noisy and complex environmental cues. These mechanisms are not only relevant to C. elegans but may be extended to other hormonal-based decision-making mechanisms in insects and mammals

    Regulators of AWC-Mediated Olfactory Plasticity in Caenorhabditis elegans

    Get PDF
    While most sensory neurons will adapt to prolonged stimulation by down-regulating their responsiveness to the signal, it is not clear which events initiate long-lasting sensory adaptation. Likewise, we are just beginning to understand how the physiology of the adapted cell is altered. Caenorhabditis elegans is inherently attracted to specific odors that are sensed by the paired AWC olfactory sensory neurons. The attraction diminishes if the animal experiences these odors for a prolonged period of time in the absence of food. The AWC neuron responds acutely to odor-exposure by closing calcium channels. While odortaxis requires a Gα subunit protein, cGMP-gated channels, and guanylyl cyclases, adaptation to prolonged odor exposure requires nuclear entry of the cGMP-dependent protein kinase, EGL-4. We asked which candidate members of the olfactory signal transduction pathway promote nuclear entry of EGL-4 and which molecules might induce long-term adaptation downstream of EGL-4 nuclear entry. We found that initiation of long-term adaptation, as assessed by nuclear entry of EGL-4, is dependent on G-protein mediated signaling but is independent of fluxes in calcium levels. We show that long-term adaptation requires polyunsaturated fatty acids (PUFAs) that may act on the transient receptor potential (TRP) channel type V OSM-9 downstream of EGL-4 nuclear entry. We also present evidence that high diacylglycerol (DAG) levels block long-term adaptation without affecting EGL-4 nuclear entry. Our analysis provides a model for the process of long-term adaptation that occurs within the AWC neuron of C. elegans: G-protein signaling initiates long-lasting olfactory adaptation by promoting the nuclear entry of EGL-4, and once EGL-4 has entered the nucleus, processes such as PUFA activation of the TRP channel OSM-9 may dampen the output of the AWC neuron

    DAF-21/Hsp90 is required for C. elegans longevity by ensuring DAF-16/FOXO isoform A function

    Get PDF
    The FOXO transcription factor family is a conserved regulator of longevity and the downstream target of insulin/insulin-like signaling. In Caenorhabditis elegans, the FOXO ortholog DAF-16A and D/F isoforms extend lifespan in daf-2 insulin-like receptor mutants. Here we identify the DAF-21/Hsp90 chaperone as a longevity regulator. We find that reducing DAF-21 capacity by daf-21(RNAi) initiated either at the beginning or at the end of larval development shortens wild-type lifespan. daf-21 knockdown employed from the beginning of larval development also decreases longevity of daf-2 mutant and daf-2 silenced nematodes. daf-16 loss-of-function mitigates the lifespan shortening effect of daf-21 silencing. We demonstrate that DAF-21 specifically promotes daf-2 and heat-shock induced nuclear translocation of DAF-16A as well as the induction of DAF-16A-specific mRNAs, without affecting DAF-16D/F localization and transcriptional function. DAF-21 is dispensable for the stability and nuclear import of DAF-16A, excluding a chaperone-client interaction and suggesting that DAF-21 regulates DAF-16A activation upstream of its cellular traffic. Finally, we show a selective requirement for DAF-21 to extend lifespan of DAF-16A, but not DAF-16D/F, transgenic daf-2 mutant strains. Our findings indicate a spatiotemporal determination of multiple DAF-21 roles in fertility, development and longevity and reveal an isoform-specific regulation of DAF-16 activity. © 2018, The Author(s)

    The significance of genome-wide transcriptional regulation in the evolution of stress tolerance.

    Get PDF
    It is widely recognized that stress plays an important role in directing the adaptive adjustment of an organism to changing environments. However, very little is known about the evolution of mechanisms that promote stress-induced variation. Adaptive transcriptional responses have been implicated in the evolution of tolerance to natural and anthropogenic stressors in the environment. Recent technological advances in transcriptomics provide a mechanistic understanding of biological pathways or processes involved in stress-induced phenotypic change. Furthermore, these studies are (semi) quantitative and provide insight into the reaction norms of identified target genes in response to specific stressors. We argue that plasticity in gene expression reaction norms may be important in the evolution of stress tolerance and adaptation to environmental stress. This review highlights the consequences of transcriptional plasticity of stress responses within a single generation and concludes that gene promoters containing a TATA box are more capable of rapid and variable responses than TATA-less genes. In addition, the consequences of plastic transcriptional responses to stress over multiple generations are discussed. Based on examples from the literature, we show that constitutive over expression of specific stress response genes results in stress adapted phenotypes. However, organisms with an innate capacity to buffer stress display plastic transcriptional responses. Finally, we call for an improved integration of the concept of phenotypic plasticity with studies that focus on the regulation of transcription. © Springer Science+Business Media B.V. 2010

    Diverse regulation of sensory signaling by C. elegans nPKC-epsilon/eta TTX-4

    No full text
    Molecular and pharmacological studies in vitro suggest that protein kinase C (PKC) family members play important roles in intracellular signal transduction. Nevertheless, the in vivo roles of PKC are poorly understood. We show here that nPKC-epsilon/eta TTX-4 in the nematode Caenorhabditis elegans is required for the regulation of signal transduction in various sensory neurons for temperature, odor, taste, and high osmolality. Interestingly, the requirement for TTX-4 differs in different sensory neurons. In AFD thermosensory neurons, gain or loss of TTX-4 function inactivates or hyperactivates the neural activity, respectively, suggesting negative regulation of temperature sensation by TTX-4. In contrast, TTX-4 positively regulates the signal sensation of ASH nociceptive neurons. Moreover, in AWA and AWC olfactory neurons, TTX-4 plays a partially redundant role with another nPKC, TPA-1, to regulate olfactory signaling. These results suggest that C. elegans nPKCs regulate different sensory signaling in various sensory neurons. Thus, C. elegans provides an ideal model to reveal genetically novel components of nPKC-mediated molecular pathways in sensory signaling
    corecore