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Abstract It is widely recognized that stress plays an important role in directing the

adaptive adjustment of an organism to changing environments. However, very little is

known about the evolution of mechanisms that promote stress-induced variation. Adaptive

transcriptional responses have been implicated in the evolution of tolerance to natural and

anthropogenic stressors in the environment. Recent technological advances in transcri-

ptomics provide a mechanistic understanding of biological pathways or processes involved

in stress-induced phenotypic change. Furthermore, these studies are (semi) quantitative and

provide insight into the reaction norms of identified target genes in response to specific

stressors. We argue that plasticity in gene expression reaction norms may be important in

the evolution of stress tolerance and adaptation to environmental stress. This review

highlights the consequences of transcriptional plasticity of stress responses within a single

generation and concludes that gene promoters containing a TATA box are more capable of

rapid and variable responses than TATA-less genes. In addition, the consequences of

plastic transcriptional responses to stress over multiple generations are discussed. Based on

examples from the literature, we show that constitutive over expression of specific stress

response genes results in stress adapted phenotypes. However, organisms with an innate

capacity to buffer stress display plastic transcriptional responses. Finally, we call for an

improved integration of the concept of phenotypic plasticity with studies that focus on the

regulation of transcription.
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Introduction

Organisms cope with most adverse environmental conditions by inducing specific, and in

some cases adaptive, stress responses. Phenotypic plasticity, in turn, is the ability of a

genotype to modify phenotype expression in response to the environment (DeWitt and

Scheiner 2004), which again can be adaptive, but also maladaptive or functionally neutral.

Parsons (1987) postulated that phenotypic and genetic variations are increased in stressful

environments (but see Schlichting and Pigliucci 1998, 1998 for a discussion), and that most

of the stress-induced variation in quantitative traits is confined to a handful of loci.

Transcription is a critical step in converting genotypes into phenotypes, although changes

in transcript levels do not always modulate phenotype expression and visa versa (Wittkopp

2007). Complex phenotypic changes in response to environmental variables are frequently

studied at (but also limited to) the transcriptional level. However, alternative splicing of

mRNAs could provide another explanation for plasticity (Marden 2008), and has been

shown to be the source of the impressive hypervariability in the innate immune surveil-

lance molecules of the insects Drosophila melanogaster (Watson et al. 2005) and

Anopheles gambiae (Dong et al. 2006). Since the development of transcriptome-wide gene

expression analyses (transcriptomics), an overwhelming corpus of studies has demon-

strated that abiotic stress is associated with differential expression of genes (Cossins et al.

2006; Roelofs et al. 2008). A major advantage of this approach is that these genes can be

functionally analyzed to provide an understanding of the mechanistic basis of stress

responses (Nota et al. 2008). If these effects can be studied in a biological system without

genetic differences, the plasticity (reaction norm) of transcriptional change associated with

physiological alterations caused by the environmental stress factor can be identified. It is

thus highly appropriate to study the contribution of phenotypic plasticity to phenotypic

evolution in the context of adaptation to abiotic stress, because phenotypic change (level of

stress tolerance) and environmental stimulus (the stress factor) can be experimentally

quantified together with associated transcriptional reaction norms. Plasticity, being subject

to natural selection, will be favoured over fixed responses in organisms experiencing

predictable environmental variations (David et al. 2004). In contrast, plasticity may reduce

efficiency of natural selection, because it weakens consistency of the relationship between

genotype and phenotype. Thus, plasticity may prevent a net change over time in order to

maintain genetic and trait variation in populations. This review aims to highlight how

plasticity in transcriptional response influences adaptation to abiotic stress by focusing on

transcriptomic studies (microarray analyses) that have investigated the significance of

genome-wide transcriptional regulation in genetic adaptation to stressful environments.

Firstly, the concept of transcriptional regulation is introduced, followed by a discussion of

the variation in transcriptional response associated with stress adaptation within a single

generation. Secondly, we investigate the evolutionary consequences of transcriptional

variation by reviewing studies that have encountered genetic adaptation to stress (at the

transcriptional level) in natural populations exposed to stressful environments over mul-

tiple generations.

Transcriptional regulation

In this section we only highlight the major steps in the process of transcriptional regulation,

for a full review on this topic we refer to Wray et al. (2003). This complex process is

characterized by the integration of developmental, temporal, environmental, endocrine and
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tissue specific signals, transmitted by the activation, nuclear translocation and binding of

transcription factors to specific binding sites. Transcription factors (TF) are proteins that

bind to specific DNA sequences upstream of the coding region of a gene (the promoter).

The basal RNA polymerase II complex bound to an initiator or TATA box, can interact

with TFs to determine the rate of transcriptional initiation: the frequency in a fixed time

interval by which the RNA polymerase II complex leaves the initiator to transcribe the

coding sequence into mRNA (Warren 2002). It, furthermore, involves a variety of inter-

actions between proteins and DNA, including: (1) DNA looping, to bring together tran-

scription factors bound to distantly positioned binding sites; (2) recruitment of co-factors

i.e. proteins which do not bind DNA but modulate transcription by specific protein–protein

interactions; and, (3) chromatin remodeling, an event that determines the accessibility of

promoters for transcriptional complex binding. The resulting mRNAs are then processed

(intron removal through splicing) and transported to ribosomes to be translated to func-

tional proteins. It is important to note that the transcriptional activity of a gene is inducible

through environmental cues spanning a large dynamic range.

Abiotic stress response

Physical factors (temperature, humidity, oxygen pressure, xenobiotic compounds) above a

critical threshold, elicit a stress response. It is generally accepted that altered gene

expression is one of the first signs of metabolic adjustment (Van Straalen and Roelofs

2006). The stress response at the molecular level can be dissected into three stages;

sensing, signal transduction and transcription initiation. Kultz (2005) suggested that stress

sensors monitor the degree of macromolecular integrity rather than an environmental

signal, which would provide immediate feedback to activated stress response pathways.

Lipid damage in membranes, misfolded intracellular proteins and DNA damage are the

important macromolecular targets to sense stress. Additionally, increased reactive oxygen

species (ROS) are an important second messenger for stress sensing (Mikkelsen and

Wardman 2003). Heat stress is for instance sensed by high affinity binding of heat shock

protein (HSP) 70 and HSP 83 to unfolding proteins, thereby releasing the transcriptional

activator heat shock factor (HSF). Trimerization of HSF will induce transcription of hsp

genes by binding to heat shock elements present in hsp promoters (Santoro 2000). The

second step is the transduction of the stress signal towards the nucleus to evoke a tran-

scriptional response, which is extremely complex in higher eukaryotes. A well known

signaling pathway is the Stress Activated Protein Kinase Pathway. Upon conformational

change due to the stress signal, either kinases or phosphatases can bind to (de) phos-

phorylated amino acid residues (a comprehensive overview is given by van Straalen and

Roelofs 2006). This cascade typically terminates in the nuclear translocation and activation

of a stress responsive transcription factor. Transcription is elicited and synthesis of gene

products associated with stress commences. Finally, severe stress will ultimately lead to

cell death via necrosis (pathological cell death) or apoptosis (programmed cell death, or

cell suicide; Kultz 2005).

Transcriptional reaction norms and abiotic stress within a generation

The transciptome is dynamic and differential gene expression is essential for cell function,

but also instrumental in facilitating flexible adaptation to fluctuating (abiotic) stress. To

Evol Ecol (2010) 24:527–539 529

123



maximize survival and reproduction (i.e. Darwinian fitness), it is therefore of paramount

importance to fine tune the timing, efficiency and specificity of targeted responses (Gasch

et al. 2000; Gracey et al. 2001; Owen et al. 2008). However, defining the precise

boundaries of transcriptional norms is a major hurdle, mainly due to inter- and intra-

species genomic differences. For instance, the metallothionein (mt) gene is efficiently

regulated upon abiotic stress, such as heavy metals, to facilitate flexible adaptation to

changing environments. In fact, the gene product has been shown to detoxify particular

heavy metals by chelating free metal ions in the cell (Hensbergen et al. 1999; Roesijadi

1992). This MT-metal complex is in turn transported to vesicles and compartmentalized

(Haq et al. 2003). Recently, Janssens et al. (2007) isolated several naturally occurring mt
promoter (pmt) alleles from the soil arthropod Orchesella cincta and studied their induc-

ibility upon cadmium- and oxidative stress with luciferase reporter assays. Surprisingly,

basal expression levels of the alleles were significantly different. All pmt alleles were

susceptible to Cd, but their reaction norms differed drastically, indicating that the variation

in cis-regulatory units is important in driving the plasticity of gene expression. Metallo-

thionein expression was also studied in detail in vivo, again showing pronounced differ-

ences between pmt alleles upon Cd challenge (Janssens 2008). Furthermore, a population

genetic study showed that the frequency of the most inducible (plastic) pmt allele increased

significantly with increased levels of soil metal pollution (Janssens et al. 2008). Recently, a

microarray study (Roelofs et al. 2009) demonstrated that over 500 genes were signifi-

cantly affected by metal pollution, and transcriptional responses were observed to be up to

100-fold up- or 20-fold down-regulated compared to the non-challenged control group.

Closer inspection of the responses of specific functional categories revealed that effector

genes (i.e. stress response genes, and genes involved in cuticle formation) showed a wider

range of transcriptional activity compared both to housekeeping genes and genes involved

in signaling. This observation has been independently confirmed by others (Denver et al.
2005).

Thermal stress has been studied extensively, also at the transcriptional level. A recent

study of transcriptome changes in the liver of the eurythermal killifish, Australofundulus
limnaeus, during thermal acclimation (Podrabsky and Somero 2004) has revealed a role

for high mobility group b1 proteins (HMGB1) as general (i.e. not directly target gene-

specific) activators of transcription. According to Podrabsky and Somero (2004), HMGB1
mRNA content increases in response to a temperature decrease (either diurnal or seasonal)

to effectively counteract the tendency of DNA to assume a more closed configuration at

lower temperatures. HMGB1 promotes transcription, not in a global non-targeted fashion

but by maintaining an ‘open’ DNA configuration of transcription factors and thereby

allowing sequence-specific access to gene promoter regions. This mechanism is not

inconsistent with the finding of a common expression footprint of 252 up-regulated genes

in seven tissues of cold-acclimated common carp, Cyprinus carpio (Gracey et al. 2004). It

would be intriguing to know whether an analogous mechanism underpins the specific suite

of temperature-induced transcriptional changes, involving a number of energy metabolism

genes observed in the soil-dwelling invertebrate O. cincta (Ellers et al. 2008). The HMGB1

response warrants further studies to ascertain its ubiquity as a modulator of acclimation to

cold stress across a range of vertebrate and invertebrate taxa, and also to determine whether

or not it facilitates transcriptomic adjustments in response to non-thermal stressors.

Although non-genomic model organisms facilitate an informative integration of eco-

logically-relevant traits, these studies are frequently hamstrung in terms of ascribing

causality because of the unavailability of a full genome sequence and also the difficulty

(if not impossibility) of performing genetic manipulations.
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An ideal candidate and excellent investigative tool that meets the challenge of deter-

mining the timing efficiency, and specificity of gene regulation in response to stressors is

the nematode worm Caenorhabditis elegans. Due to its self-fertilizing propagation, which

results in offspring that contain a genome architecture that is essentially clonal, the genetic

variability that inevitably accompanies sexual reproduction is largely eliminated. Tran-

scriptional responses are nevertheless highly plastic in C. elegans. Some compounds, such

as toxic levels of heavy metals (Calafato et al. 2008; Swain et al. 2004), can reduce

C. elegans survival rates; others, for example quercetin, extend life-span (Pietsch et al.

2009). Such responses have, moreover, been linked to specific genes and pathways. Under

field conditions abiotic stress is, however, seldom uni-dimensional, thus the task of

defining transcriptional norms and deciphering molecular genetic response pathways is

considerably more challenging (Steinberg et al. 2008), although not impossible as dem-

onstrated by studies on humic substances (Menzel et al. 2005) and river sediment mixture

toxicity (Menzel et al. 2009).

A striking response to abiotic stress in C. elegans is the transformation of larvae into

facultative dauers. The existence of a cryptobiotic stage is, of course, an evolutionary

strategy that is not restricted to nematodes. Other examples include the gemmules in

sponges or tuns in tardigrades, both of which ensure survival during harsh environmental

conditions. In nematodes, cryptobiotic dauer larvae are resistant to stress, they stop feeding

and arrest in development, and they are able to survive for months rather than weeks

(Cassada and Russell 1975). Unfavorable stimuli (e.g. lack of food, stress or crowding)

induce the transition from the L1 larval stage to the dauer physiological state, a process that

is driven by a pheromone that targets the TGFbeta, cGMP and insulin-like signalling

pathways (Birnby et al. 2000; Kimura et al. 1997; Ren et al. 1996). The underlying genetics

of dauer formation and the molecular basis of plasticity are of course more complex (see

the seminal review by Fielenbach and Antebi 2008 for details) and are modulated by global

changes in transcription levels. In general, transcription is depressed by 11–17% during

dauer but rapidly increases upon dauer termination and development to the L4 stage

(Dalley and Golomb 1992). However, the relative expression changes of individual genes

are remarkable, with about 10% of the transcriptome (1,984 genes) significantly dauer-

regulated, including specific genes that are induced early in dauer, others that are induced

immediately before ‘release’ from dauer into L4, and yet others whose induction increases

continuously throughout the dauer phase (Wang and Kim 2003). Although dauer formation

can prolong the lifespan of a nematode by a factor of 5, post-dauer aging is normal (Klass

and Hirsh 1976).

Caenorhabditis briggsae, a related nematode species, seems to have a homologous

dauer pathway, with evolutionary conserved dauer orthologs. Like C. elegans, it enters

dauer in response to unfavorable environmental conditions; however, the temperature

tolerance of C. briggsae seems to be several degrees higher than that of C. elegans (Inoue

et al. 2007), which has been shown to correlate with the occupation of different ecological

niches within overlapping geographic locations (Cutter et al. 2006). Overall, this empha-

sizes that the transcriptional norm is defined by the need to respond to environmental

change and maintain phenotypic plasticity, demonstrating the ability of one genotype to

engender different phenotypes in response to environmental challenge (Lopez-Maury et al.

2008).

All, but a few, laboratories use the same cryopreserved strain of C. elegans, namely an

isolate from Bristol, UK. However, C. elegans is a globally omnipresent species, and due

to inevitable geographical isolation over time, natural genetic variation is apparently

reflected by numerous single nucleotide polymorphisms (SNPs), deletions and insertions.
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The most divergent wild type strains are N2 and CB4856 with a SNP, on average, every

840 bp (Swan et al. 2002) and some 500 deletions throughout the genome (Dalley and

Golomb 1992). This feature has been exploited in genomics-based studies, where quan-

titative trait loci (QTL) mapping is capable of pinpointing the master molecular-genetic

regulators driving plasticity. One notable example by Li et al. (2006) identifies the plas-

ticity of gene expression in C. elegans exposed to different temperatures. Interestingly,

differential gene expression has been shown to be enriched for specific functional cate-

gories, chromosomal locations and coexpression in evolutionary divergent isolates, dem-

onstrating that selective forces shape local expression patterns (Denver et al. 2005; Jordan

et al. 2008). Although the divergence of C. elegans strains is markedly lower compared to

sexually reproducing species, it demonstrates that miniscule genetic ‘tweaks’ can result in

pronounced changes in phenotypic plasticity. Indeed, the complexity of a phenotype is the

consequence of the interaction between genes and the environment.

Transcriptional regulatory evolution and stress tolerance

The evolutionary process of adaptive transcriptional regulation in a clearly-defined eco-

logical framework has been substantiated in a number of cases throughout different life

forms. Environmental stress is a selection pressure to which organisms have adapted under

prolonged exposure, resulting in tolerant/resistant natural populations. Transcriptome-wide

analyses have recently shed more light on the role of transcriptional regulation in stress

adaptation. Insecticide resistance represents an important example of natural selection.

Daborn et al. (2002) studied the transcriptional regulation of the DDT-R locus on chro-

mosome 2 of D. melanogaster, a locus that confers resistance not only to DDT, but also

shows cross-resistance to a number of existing and novel insecticides. The DDT-R locus is

associated with the cytochrome P450 gene cyp6G1. Using DDT-R strains, Daborn et al.

(2002) were able to identify a severe over-transcription of cyp6G1 compared to[90 other

cyp450 genes. The over-transcription of cyp6G1 could be localized to an insertion of an

Accord transposon into the 50 untranslated region of the gene. This suggests that cyp6G1

lost its plastic response due to insecticide selection pressure. Remarkably, this (molecular)

phenotype spread globally within decades reaching almost fixation in non-African Dro-
sophila populations (Catania et al. 2004).

The over-expression of target stress response genes as a mechanism of adaptive evo-

lution of stress tolerance have also been identified in other invertebrate taxa. For example,

metal tolerant populations of O. cincta are linked to the constitutive over expression of the

metallothionein gene (Roelofs et al. 2007; Sterenborg 2003). A specific mt promoter allele

was shown to be increased in O. cincta populations inhabiting environments with elevated

metal concentrations (Janssens et al. 2008). This allele displayed the steepest reaction norm

among the tested pmt alleles (Janssens et al. 2007), as well as the highest maximum

induction potential upon cadmium challenge. In the adapted populations, however, this

allele was constitutively expressed such that induction by cadmium was negligible. The

inducibility (plasticity) was seemingly lost in favour of adaptive evolution of metal tol-

erance, implying that factors in trans (genetic background) may also be targets of natural

selection. In a recent microarray study, cadmium-induced gene expression of a tolerant

population was compared to a metal sensitive reference population (Roelofs et al. 2009).

Clear differences between the two strains/ecotypes at the transcriptional level were

observed. The reference population showed an unequivocal signature of stress-induced

perturbation of gene expression in response to the heavy metal challenge (Fig. 1a), that
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was significantly different to the tolerant population which lost part of its plastic response

(Fig. 1b). Gene ontology analysis revealed that the genes are functionally implicated in

cuticle formation, stress response and chromatin remodeling. The data suggest that abiotic

stress may be able to drive evolution through constitutive over-expression of genetic stress

response networks. The regulatory hubs that control these networks may be the key to

explain adaptive phenotypes. Previous studies have provided evidence that whilst metal

adapted populations matured earlier and juvenile body growth was faster, the adapted

phenotype did not result in reduced fecundity (Posthuma et al. 1992, 1993). Stress adap-

tation through transcriptional regulatory evolution has also been implicated in humans. A

very elegant study by Tishkoff et al. (2007) provided clear evidence of convergent evo-

lution of lactose tolerance by enhanced transcription of the lactase gene (LCT) in adult
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Fig. 1 Transcriptional reaction norms from a microarray study with cadmium (Cd) challenged Orchesella
cincta populations. MA plot of two populations; a Reference strain from a population sampled at a clean
site; b tolerant strain derived from a population sampled at a heavy metal (cadmium, lead and zinc) polluted
abandoned mining site. A strong signature of stress-induced perturbation of gene expression in response to
Cd is observed in the reference strain (2Log differential expression ratio’s range between -4 and ?8;
Fig. 1a), while the tolerant animals lost most of this stress-induced gene expression signature (e.g. strongly
diminished maximum up regulation of (2Log differential expression ratio’s range between -3 and ?4,
Fig. 1b). x-axis mean 2Log total hybridization intensity of control and Cd exposed animals (M = (2Log
control ? 2Log Cd treatment)/2); y-axis Log2 ratio Cd treated vs control animals (A = 2Log Cd
treatment-2Log control). Hence, cDNA probes with positive y values represent genes that are upregulated
due to Cd treatment, while cDNA probes with negative y values represent genes that are down regulated due
to Cd treatment. A total of 1,600 cDNAs were present on the microarray

Evol Ecol (2010) 24:527–539 533

123



Africans and Europeans. This gene is essential for the digestion of lactose, the main

carbohydrate in milk, into sugars. However, activity declines rapidly after weaning due to

decreasing LCT enzyme levels. Derived cys-regulatory elements that increase LCT tran-

scription caused a selective sweep over the past 7,000 years in Northern Europeans and

pastoralist populations from Africa. Convergent evolution was driven by a strong selection

pressure as a consequence of shared animal domestication and adult milk consumption.

Another example on stress adaptation through transcriptional regulatory evolution in

humans was very recently published by Luca et al. (2009). The serum glucocorticoid-

regulated kinase 1 (SGK1) promotes cellular homeostasis in response to stress. Luca et al.

(2009) showed that human populations living nearby the equator have increased gluco-

corticoid receptor mediated SGK1 transcription resulting in increased stress response. It

was suggested that variation in SGK1 transcriptional regulation could favor negative

effects of glucocorticoid mediated stress response predisposing individuals to chronic

diseases such as hypertension. Adaptive evolution of stress tolerance associated with

constitutive over-expression was also shown in the metal hyperaccumuating plant Thlaspi
caerulescens (van de Mortel et al. 2006). Besides stress response genes (metallothioneins),

genes involved in metal homeostasis (Zn transporters) and lignin biosynthesis were con-

stitutively over-expressed. Finally, up regulation of error-prone DNA polymerase, resulting

in increased mutagenesis and evolvability, has been associated with stress-adapted evo-

lution in bacteria (Foster 2005).

Environmental stress as driver of adaptive evolution through increased transcription of

stress response genes should, however, not be treated as a general, universally applicable,

concept. If increased constitutive transcription of stress response genes drives adaptive

evolution of stress tolerance, we predict over- expression of hsp70 to be a key factor in

high temperature adapted Drosophila. Surprisingly, several independent selection studies

identified the presence of lower hsp70 expression in adapted phenotypes and other phys-

iological processes were the target of selection (Sorensen and Loeschcke 2002). Further-

more, absence of adaptive evolution of transcription regulation, despite the presence of a

clear abiotic selection pressure, has also been reported. This was exemplified in the rufous-

collard sparrow (Zonotrichia capensis) distributed along an altitudinal gradient (Cheviron

et al. 2008). Cold and hypoxic conditions interact to create a stressful environment in

which energy metabolism needs to be maintained in order to adapt to low oxygen avail-

ability and thermal stress. It is well known that natural selection can mediate adaptive

evolution in certain vertebrates to create adaptive phenotypes at high altitudes (Frisancho

1975). These studies have recently been supported by evidence of adaptive divergence

(polymorphism in mtDNA) at the molecular level (Ruiz-Pesini et al. 2004), although the

adaptive role of transcriptional variation in high-altitude environments was not addressed.

However, the study by Cheviron et al. (2008) yielded contrasting results. They studied

transcriptomic profiles from the muscle tissue of the rufous-collard sparrow native along an

altitudinal gradient in the Pacific Andes ranging from 2,000 to 4,100 m above sea level.

Significant differences in regulation of transcripts involved in oxidative phosphorylation,

oxidative stress response, protein synthesis and signal transduction were observed. To

assess plasticity in these differences a common garden experiment at 150 m above sea

level was conducted and, interestingly, none of the differentially expressed transcripts

remained significant. The study demonstrates that cold- and hypoxia-tolerance in rufous-

collared sparrows is highly plastic. Consequently, the high level of transcriptional plas-

ticity prevented the adaptive evolution of cold/hypoxia tolerant phenotype. This is of

particular interest, since gene flow along the studied altitudinal gradient is substantially

reduced, suggesting that there is scope for adaptive divergence. In any case, the above
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mentioned studies exemplify the difficulty to predict which strategy is actually favored by

evolution.

Stress-induced transcription and the TATA box

As noted earlier, most protein-coding genes are transcribed by RNA polymerase II.

Transcriptional initiation requires assembly of this polymerase to a core promoter structure

such as the TATA box which is present in about 20% of Saccharomyces cerevisiae genes

(Basehoar et al. 2004). Remarkably, TATA-containing genes seem to be enriched in stress

response genes, a notion that applies to plants (Walther et al. 2007) and humans (Yang

et al. 2007), and suggests that TATA motifs are associated with rapid and variable regu-

lation. Indeed, it was shown that stress-related proteins expressed from genes with a TATA

box exhibit a high level of intrinsic variability (Newman et al. 2006). Moreover, Blake

et al. (2006) showed that this intrinsic variability enables rapid individual cell responses

which results in a ‘burst’ of gene expression that confers a clear benefit when facing acute

environmental stress. In other words, the TATA box increases the plasticity of gene

regulation and is associated with stress response genes. In contrast, TATA-less genes are

enriched among housekeeping genes and growth-related genes (Basehoar et al. 2004). This

suggests that transcriptional control may be bipolar with distinct genetic elements in core

promoters regulating either growth- or stress related genes (Lopez-Maury et al. 2008).

Evolution of stress tolerance and the TATA box

Since stress response genes are enriched in TATA containing genes, it might be expected

that TATA boxes show rapid regulatory evolution specifically when abiotic stress is the

selective force. This hypothesis was tested by Tirosh et al. (2006) in a systems biology

context. The study provided clear evidence that long-term adaptive evolution of stress

tolerance among yeast species is correlated with short term regulatory changes to envi-

ronmental stress. The study also showed that stress response genes with TATA box show

exceptional rapid regulatory evolution, not only in yeast but also in C. elegans, fruit fly,

plants and mammals (Tirosh et al. 2006). Furthermore, experimental mutation accumu-

lation studies show a significant correlation between transcriptional plasticity and mutation

variance in TATA box containing stress response genes (Landry et al. 2007). Taken

together, these data highlight the importance of the TATA box containing stress response

genes in both short- and long-term regulatory adaptation.

Conclusion and perspective

In order to stay competitive, organisms need to balance reproduction and the protection

against environmental stress. Transcriptional plasticity supports survival in variable

stressful environments, at least in the short term. When a particular stress factor persists

over multiple generations, adaptation may result in persistent changes in gene expres-

sion, namely constitutive over expression of specific stress response genes, resulting in

an adaptive phenotype. The stress-adapted transcriptional profile suggests an elevated

but decreased flexibility in transcriptional responses to cope with the selective agent.

Still, it is difficult to predict such an evolutionary scenario, because few studies show
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contrasting results (down regulation of stress response genes in stress adapted pheno-

types). Moreover, we discussed evidence from the literature where genome-wide tran-

scriptional plasticity seems to counteract adaptive evolution towards a stress tolerant

phenotype. However, the role of genome-wide transcriptional responses in stress accli-

mation and adaptive evolution of stress tolerance are still poorly understood, although

there is recognition that phenotypes emanating from plasticity can become stabilized via

genetic assimilation as less optimal pathways are closed down (Schlichting and Smith

2002).

Data from systems biology studies on genomic model organisms imply that the TATA

box, a cis-regulatory genetic element, is overrepresented in stress response genes.

Remarkably, TATA box-containing stress response genes show an increased transcrip-

tional divergence and it could be argued that TATA boxes may foster the modification of

gene expression characteristics. Indeed, experimental data provided evidence that muta-

tions in and around a TATA box change the plasticity of gene expression (Blake et al.

2006). Although the use of well established genetic/genomic model organisms play an

essential role in obtaining mechanistic evidence, a draw back has to be their lack of

ecological relevance. In any case, the recent technological improvements (high throughput

sequencing and qRT-PCR, etc.) will trigger a new generation of hypotheses testing, namely

genomic studies derived from ecologically relevant organisms currently with limited

genomic information. For instance, the genome of Lumbricus rubellus is currently being

elucidated with the aid of massively parallel sequencing (Sturzenbaum et al. 2009). With

this information in hand, it will, for example, be feasible to test whether the adaptation of

L. rubellus to Copper contamination was driven by evolutionary divergence and selection

on TATA box-containing genes. These developments will increase our knowledge base on

the mechanistic role of transcriptional plasticity to cope with changing environments and to

what extent this drives adaptive evolution of stress tolerance.
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