2,081 research outputs found
Exploring jet substructure with jet shapes in ALICE
The characterization of the jet substructure can give insight into the
microscopic nature of the modification induced on high-momentum partons by the
Quark-Gluon Plasma that is formed in ultra-relativistic heavy-ion collisions.
Jet shapes allow us to study the modification of parton to jet fragmentation
and virtuality, probing jet energy redistribution, intra-jet broadening or
collimation and possible flavour hierarchy. Results of a selected set of jet
shapes will be presented for \mbox{p--Pb} collisions at
and for
\mbox{Pb--Pb} collisions at . Results are also compared with PYTHIA calculations and
models that include in-medium energy loss.Comment: Proceedings of the XXVIth International Conference on
Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2017) 5 pages, 5
figure
Model and parameter dependence of heavy quark energy loss in a hot and dense medium
Within the framework of the Langevin equation, we study the energy loss of
heavy quark due to quasi-elastic multiple scatterings in a quark-gluon plasma
created by relativistic heavy-ion collisions. We investigate how the initial
configuration of the quark-gluon plasma as well as its properties affect the
final state spectra and elliptic flow of D meson and non-photonic electron. We
find that both the geometric anisotropy of the initial quark-gluon plasma and
the flow profiles of the hydrodynamic medium play important roles in the heavy
quark energy loss process and the development of elliptic flow. The relative
contribution from charm and bottom quarks is found to affect the transverse
momentum dependence of the quenching and flow patterns of heavy flavor decay
electron; such influence depends on the interaction strength between heavy
quark and the medium.Comment: 16 pages, 7 figure
Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb-Pb collisions at = 2.76$ TeV
In ultrarelativistic heavy-ion collisions, the event-by-event variation of
the elliptic flow reflects fluctuations in the shape of the initial state
of the system. This allows to select events with the same centrality but
different initial geometry. This selection technique, Event Shape Engineering,
has been used in the analysis of charge-dependent two- and three-particle
correlations in Pb-Pb collisions at TeV. The
two-particle correlator ,
calculated for different combinations of charges and , is
almost independent of (for a given centrality), while the three-particle
correlator
scales almost linearly both with the event and charged-particle
pseudorapidity density. The charge dependence of the three-particle correlator
is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity
violating effect of the strong interaction. However, its measured dependence on
points to a large non-CME contribution to the correlator. Comparing the
results with Monte Carlo calculations including a magnetic field due to the
spectators, the upper limit of the CME signal contribution to the
three-particle correlator in the 10-50% centrality interval is found to be
26-33% at 95% confidence level.Comment: 20 pages, 6 captioned figures, 1 tables, authors from page 15,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/382
Measurement of the production of charm jets tagged with D mesons in pp collisions at = 7 TeV
The production of charm jets in proton-proton collisions at a center-of-mass
energy of TeV was measured with the ALICE detector at the CERN
Large Hadron Collider. The measurement is based on a data sample corresponding
to a total integrated luminosity of , collected using a
minimum-bias trigger. Charm jets are identified by the presence of a D
meson among their constituents. The D mesons are reconstructed from their
hadronic decay DK. The D-meson tagged jets are
reconstructed using tracks of charged particles (track-based jets) with the
anti- algorithm in the jet transverse momentum range
and pseudorapidity
. The fraction of charged jets containing a D-meson
increases with from to . The distribution of D-meson tagged jets as a
function of the jet momentum fraction carried by the D meson in the
direction of the jet axis () is reported for two ranges
of jet transverse momenta, and
in the intervals
and , respectively. The
data are compared with results from Monte Carlo event generators (PYTHIA 6,
PYTHIA 8 and Herwig 7) and with a Next-to-Leading-Order perturbative Quantum
Chromodynamics calculation, obtained with the POWHEG method and interfaced with
PYTHIA 6 for the generation of the parton shower, fragmentation, hadronisation
and underlying event.Comment: 29 pages, 8 captioned figures, 3 tables, authors from page 24,
published version, figures at http://alice-publications.web.cern.ch/node/525
Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions
This report reviews the study of open heavy-flavour and quarkonium production
in high-energy hadronic collisions, as tools to investigate fundamental aspects
of Quantum Chromodynamics, from the proton and nucleus structure at high energy
to deconfinement and the properties of the Quark-Gluon Plasma. Emphasis is
given to the lessons learnt from LHC Run 1 results, which are reviewed in a
global picture with the results from SPS and RHIC at lower energies, as well as
to the questions to be addressed in the future. The report covers heavy flavour
and quarkonium production in proton-proton, proton-nucleus and nucleus-nucleus
collisions. This includes discussion of the effects of hot and cold strongly
interacting matter, quarkonium photo-production in nucleus-nucleus collisions
and perspectives on the study of heavy flavour and quarkonium with upgrades of
existing experiments and new experiments. The report results from the activity
of the SaporeGravis network of the I3 Hadron Physics programme of the European
Union 7th Framework Programme
First measurement of production in pp collisions at = 7 TeV
The production of the charm-strange baryon is measured for
the first time at the LHC via its semileptonic decay into e
in pp collisions at TeV with the ALICE detector. The transverse
momentum () differential cross section multiplied by the branching
ratio is presented in the interval 1 8 GeV/ at
mid-rapidity, 0.5. The transverse momentum dependence of the
baryon production relative to the D meson production is
compared to predictions of event generators with various tunes of the
hadronisation mechanism, which are found to underestimate the measured
cross-section ratio.Comment: 22 pages, 6 captioned figures, 1 table, authors from page 17,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/412
Energy dependence of exclusive photoproduction off protons in ultra-peripheral p-Pb collisions at = 5.02 TeV
The ALICE Collaboration has measured the energy dependence of exclusive
photoproduction of vector mesons off proton targets in
ultra-peripheral p-Pb collisions at a centre-of-mass energy per nucleon pair
TeV. The ee and decay channels
are used to measure the cross section as a function of the rapidity of the
in the range , corresponding to an energy in the
p centre-of-mass in the interval GeV.
The measurements, which are consistent with a power law dependence of the
exclusive photoproduction cross section, are compared to previous
results from HERA and the LHC and to several theoretical models. They are found
to be compatible with previous measurements.Comment: 25 pages, 3 captioned figures, 3 tables, authors from page 19,
published version, figures at http://alice-publications.web.cern.ch/node/455
INFN What Next: Ultra-relativistic Heavy-Ion Collisions
This document was prepared by the community that is active in Italy, within
INFN (Istituto Nazionale di Fisica Nucleare), in the field of
ultra-relativistic heavy-ion collisions. The experimental study of the phase
diagram of strongly-interacting matter and of the Quark-Gluon Plasma (QGP)
deconfined state will proceed, in the next 10-15 years, along two directions:
the high-energy regime at RHIC and at the LHC, and the low-energy regime at
FAIR, NICA, SPS and RHIC. The Italian community is strongly involved in the
present and future programme of the ALICE experiment, the upgrade of which will
open, in the 2020s, a new phase of high-precision characterisation of the QGP
properties at the LHC. As a complement of this main activity, there is a
growing interest in a possible future experiment at the SPS, which would target
the search for the onset of deconfinement using dimuon measurements. On a
longer timescale, the community looks with interest at the ongoing studies and
discussions on a possible fixed-target programme using the LHC ion beams and on
the Future Circular Collider.Comment: 99 pages, 56 figure
Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at = 5.02 TeV
Two-particle angular correlations between unidentified charged trigger and
associated particles are measured by the ALICE detector in p-Pb collisions at a
nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum
range 0.7 5.0 GeV/ is examined,
to include correlations induced by jets originating from low
momen\-tum-transfer scatterings (minijets). The correlations expressed as
associated yield per trigger particle are obtained in the pseudorapidity range
. The near-side long-range pseudorapidity correlations observed in
high-multiplicity p-Pb collisions are subtracted from both near-side
short-range and away-side correlations in order to remove the non-jet-like
components. The yields in the jet-like peaks are found to be invariant with
event multiplicity with the exception of events with low multiplicity. This
invariance is consistent with the particles being produced via the incoherent
fragmentation of multiple parton--parton scatterings, while the yield related
to the previously observed ridge structures is not jet-related. The number of
uncorrelated sources of particle production is found to increase linearly with
multiplicity, suggesting no saturation of the number of multi-parton
interactions even in the highest multiplicity p-Pb collisions. Further, the
number scales in the intermediate multiplicity region with the number of binary
nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/161
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
- …
