2,081 research outputs found

    Exploring jet substructure with jet shapes in ALICE

    Full text link
    The characterization of the jet substructure can give insight into the microscopic nature of the modification induced on high-momentum partons by the Quark-Gluon Plasma that is formed in ultra-relativistic heavy-ion collisions. Jet shapes allow us to study the modification of parton to jet fragmentation and virtuality, probing jet energy redistribution, intra-jet broadening or collimation and possible flavour hierarchy. Results of a selected set of jet shapes will be presented for \mbox{p--Pb} collisions at sNN=5.02 TeV\sqrt{s_{\scriptscriptstyle \rm NN}}= 5.02~\mathrm{TeV} and for \mbox{Pb--Pb} collisions at sNN=2.76 TeV\sqrt{s_{\scriptscriptstyle \rm NN}} = 2.76~\mathrm{TeV}. Results are also compared with PYTHIA calculations and models that include in-medium energy loss.Comment: Proceedings of the XXVIth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2017) 5 pages, 5 figure

    Model and parameter dependence of heavy quark energy loss in a hot and dense medium

    Full text link
    Within the framework of the Langevin equation, we study the energy loss of heavy quark due to quasi-elastic multiple scatterings in a quark-gluon plasma created by relativistic heavy-ion collisions. We investigate how the initial configuration of the quark-gluon plasma as well as its properties affect the final state spectra and elliptic flow of D meson and non-photonic electron. We find that both the geometric anisotropy of the initial quark-gluon plasma and the flow profiles of the hydrodynamic medium play important roles in the heavy quark energy loss process and the development of elliptic flow. The relative contribution from charm and bottom quarks is found to affect the transverse momentum dependence of the quenching and flow patterns of heavy flavor decay electron; such influence depends on the interaction strength between heavy quark and the medium.Comment: 16 pages, 7 figure

    Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76$ TeV

    Full text link
    In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow v2v_2 reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two- and three-particle correlations in Pb-Pb collisions at sNN=2.76\sqrt{s_{_{\rm NN}}} =2.76 TeV. The two-particle correlator cos(φαφβ)\langle \cos(\varphi_\alpha - \varphi_\beta) \rangle, calculated for different combinations of charges α\alpha and β\beta, is almost independent of v2v_2 (for a given centrality), while the three-particle correlator cos(φα+φβ2Ψ2)\langle \cos(\varphi_\alpha + \varphi_\beta - 2\Psi_2) \rangle scales almost linearly both with the event v2v_2 and charged-particle pseudorapidity density. The charge dependence of the three-particle correlator is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity violating effect of the strong interaction. However, its measured dependence on v2v_2 points to a large non-CME contribution to the correlator. Comparing the results with Monte Carlo calculations including a magnetic field due to the spectators, the upper limit of the CME signal contribution to the three-particle correlator in the 10-50% centrality interval is found to be 26-33% at 95% confidence level.Comment: 20 pages, 6 captioned figures, 1 tables, authors from page 15, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/382

    Measurement of the production of charm jets tagged with D0^{0} mesons in pp collisions at s\sqrt{s}= 7 TeV

    Full text link
    The production of charm jets in proton-proton collisions at a center-of-mass energy of s=7\sqrt{s}=7 TeV was measured with the ALICE detector at the CERN Large Hadron Collider. The measurement is based on a data sample corresponding to a total integrated luminosity of 6.236.23 nb1{\rm nb}^{-1}, collected using a minimum-bias trigger. Charm jets are identified by the presence of a D0^0 meson among their constituents. The D0^0 mesons are reconstructed from their hadronic decay D0^0\rightarrowKπ+^{-}\pi^{+}. The D0^0-meson tagged jets are reconstructed using tracks of charged particles (track-based jets) with the anti-kTk_{\mathrm{T}} algorithm in the jet transverse momentum range 5<pT,jetch<305<p_{\rm{T,jet}}^{\mathrm{ch}}<30 GeV/c{\rm GeV/}c and pseudorapidity ηjet<0.5|\eta_{\rm jet}|<0.5. The fraction of charged jets containing a D0^0-meson increases with pT,jetchp_{\rm{T,jet}}^{\rm{ch}} from 0.042±0.004(stat)±0.006(syst)0.042 \pm 0.004\, \mathrm{(stat)} \pm 0.006\, \mathrm{(syst)} to 0.080±0.009(stat)±0.008(syst)0.080 \pm 0.009\, \rm{(stat)} \pm 0.008\, \rm{(syst)}. The distribution of D0^0-meson tagged jets as a function of the jet momentum fraction carried by the D0^0 meson in the direction of the jet axis (zchz_{||}^{\mathrm{ch}}) is reported for two ranges of jet transverse momenta, 5<pT,jetch<155<p_{\rm{T,jet}}^{\rm{ch}}<15 GeV/c{\rm GeV/}c and 15<pT,jetch<3015<p_{\rm{T,jet}}^{\rm{ch}}<30 GeV/c{\rm GeV/}c in the intervals 0.2<zch<1.00.2<z_{||}^{\rm{ch}}<1.0 and 0.4<zch<1.00.4<z_{||}^{\rm{ch}}<1.0, respectively. The data are compared with results from Monte Carlo event generators (PYTHIA 6, PYTHIA 8 and Herwig 7) and with a Next-to-Leading-Order perturbative Quantum Chromodynamics calculation, obtained with the POWHEG method and interfaced with PYTHIA 6 for the generation of the parton shower, fragmentation, hadronisation and underlying event.Comment: 29 pages, 8 captioned figures, 3 tables, authors from page 24, published version, figures at http://alice-publications.web.cern.ch/node/525

    Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions

    Get PDF
    This report reviews the study of open heavy-flavour and quarkonium production in high-energy hadronic collisions, as tools to investigate fundamental aspects of Quantum Chromodynamics, from the proton and nucleus structure at high energy to deconfinement and the properties of the Quark-Gluon Plasma. Emphasis is given to the lessons learnt from LHC Run 1 results, which are reviewed in a global picture with the results from SPS and RHIC at lower energies, as well as to the questions to be addressed in the future. The report covers heavy flavour and quarkonium production in proton-proton, proton-nucleus and nucleus-nucleus collisions. This includes discussion of the effects of hot and cold strongly interacting matter, quarkonium photo-production in nucleus-nucleus collisions and perspectives on the study of heavy flavour and quarkonium with upgrades of existing experiments and new experiments. The report results from the activity of the SaporeGravis network of the I3 Hadron Physics programme of the European Union 7th Framework Programme

    First measurement of Ξc0\Xi_{\rm c}^0 production in pp collisions at s\mathbf{\sqrt{s}} = 7 TeV

    Full text link
    The production of the charm-strange baryon Ξc0\Xi_{\rm c}^0 is measured for the first time at the LHC via its semileptonic decay into e+Ξνe^+\Xi^-\nu_{\rm e} in pp collisions at s=7\sqrt{s}=7 TeV with the ALICE detector. The transverse momentum (pTp_{\rm T}) differential cross section multiplied by the branching ratio is presented in the interval 1 << pTp_{\rm T} << 8 GeV/cc at mid-rapidity, y|y| << 0.5. The transverse momentum dependence of the Ξc0\Xi_{\rm c}^0 baryon production relative to the D0^0 meson production is compared to predictions of event generators with various tunes of the hadronisation mechanism, which are found to underestimate the measured cross-section ratio.Comment: 22 pages, 6 captioned figures, 1 table, authors from page 17, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/412

    Energy dependence of exclusive J/ψJ/\psi photoproduction off protons in ultra-peripheral p-Pb collisions at sNN\sqrt{s_{\rm{NN}}} = 5.02 TeV

    Full text link
    The ALICE Collaboration has measured the energy dependence of exclusive photoproduction of J/ψJ/\psi vector mesons off proton targets in ultra-peripheral p-Pb collisions at a centre-of-mass energy per nucleon pair sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV. The e+^+e^- and μ+μ\mu^+\mu^- decay channels are used to measure the cross section as a function of the rapidity of the J/ψJ/\psi in the range 2.5<y<2.7-2.5 < y < 2.7, corresponding to an energy in the γ\gammap centre-of-mass in the interval 40<Wγp<55040 < W_{\gamma\mathrm{p}}<550 GeV. The measurements, which are consistent with a power law dependence of the exclusive J/ψJ/\psi photoproduction cross section, are compared to previous results from HERA and the LHC and to several theoretical models. They are found to be compatible with previous measurements.Comment: 25 pages, 3 captioned figures, 3 tables, authors from page 19, published version, figures at http://alice-publications.web.cern.ch/node/455

    INFN What Next: Ultra-relativistic Heavy-Ion Collisions

    Full text link
    This document was prepared by the community that is active in Italy, within INFN (Istituto Nazionale di Fisica Nucleare), in the field of ultra-relativistic heavy-ion collisions. The experimental study of the phase diagram of strongly-interacting matter and of the Quark-Gluon Plasma (QGP) deconfined state will proceed, in the next 10-15 years, along two directions: the high-energy regime at RHIC and at the LHC, and the low-energy regime at FAIR, NICA, SPS and RHIC. The Italian community is strongly involved in the present and future programme of the ALICE experiment, the upgrade of which will open, in the 2020s, a new phase of high-precision characterisation of the QGP properties at the LHC. As a complement of this main activity, there is a growing interest in a possible future experiment at the SPS, which would target the search for the onset of deconfinement using dimuon measurements. On a longer timescale, the community looks with interest at the ongoing studies and discussions on a possible fixed-target programme using the LHC ion beams and on the Future Circular Collider.Comment: 99 pages, 56 figure

    Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV

    Full text link
    Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 <pT,assoc<pT,trig< < p_{\rm{T}, assoc} < p_{\rm{T}, trig} < 5.0 GeV/cc is examined, to include correlations induced by jets originating from low momen\-tum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range η<0.9|\eta|<0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p-Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton--parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p-Pb collisions. Further, the number scales in the intermediate multiplicity region with the number of binary nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/161

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur
    corecore