1,890 research outputs found
Exploring jet substructure with jet shapes in ALICE
The characterization of the jet substructure can give insight into the
microscopic nature of the modification induced on high-momentum partons by the
Quark-Gluon Plasma that is formed in ultra-relativistic heavy-ion collisions.
Jet shapes allow us to study the modification of parton to jet fragmentation
and virtuality, probing jet energy redistribution, intra-jet broadening or
collimation and possible flavour hierarchy. Results of a selected set of jet
shapes will be presented for \mbox{p--Pb} collisions at
and for
\mbox{Pb--Pb} collisions at . Results are also compared with PYTHIA calculations and
models that include in-medium energy loss.Comment: Proceedings of the XXVIth International Conference on
Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2017) 5 pages, 5
figure
Model and parameter dependence of heavy quark energy loss in a hot and dense medium
Within the framework of the Langevin equation, we study the energy loss of
heavy quark due to quasi-elastic multiple scatterings in a quark-gluon plasma
created by relativistic heavy-ion collisions. We investigate how the initial
configuration of the quark-gluon plasma as well as its properties affect the
final state spectra and elliptic flow of D meson and non-photonic electron. We
find that both the geometric anisotropy of the initial quark-gluon plasma and
the flow profiles of the hydrodynamic medium play important roles in the heavy
quark energy loss process and the development of elliptic flow. The relative
contribution from charm and bottom quarks is found to affect the transverse
momentum dependence of the quenching and flow patterns of heavy flavor decay
electron; such influence depends on the interaction strength between heavy
quark and the medium.Comment: 16 pages, 7 figure
First measurement of production in pp collisions at = 7 TeV
The production of the charm-strange baryon is measured for
the first time at the LHC via its semileptonic decay into e
in pp collisions at TeV with the ALICE detector. The transverse
momentum () differential cross section multiplied by the branching
ratio is presented in the interval 1 8 GeV/ at
mid-rapidity, 0.5. The transverse momentum dependence of the
baryon production relative to the D meson production is
compared to predictions of event generators with various tunes of the
hadronisation mechanism, which are found to underestimate the measured
cross-section ratio.Comment: 22 pages, 6 captioned figures, 1 table, authors from page 17,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/412
Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb-Pb collisions at = 2.76$ TeV
In ultrarelativistic heavy-ion collisions, the event-by-event variation of
the elliptic flow reflects fluctuations in the shape of the initial state
of the system. This allows to select events with the same centrality but
different initial geometry. This selection technique, Event Shape Engineering,
has been used in the analysis of charge-dependent two- and three-particle
correlations in Pb-Pb collisions at TeV. The
two-particle correlator ,
calculated for different combinations of charges and , is
almost independent of (for a given centrality), while the three-particle
correlator
scales almost linearly both with the event and charged-particle
pseudorapidity density. The charge dependence of the three-particle correlator
is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity
violating effect of the strong interaction. However, its measured dependence on
points to a large non-CME contribution to the correlator. Comparing the
results with Monte Carlo calculations including a magnetic field due to the
spectators, the upper limit of the CME signal contribution to the
three-particle correlator in the 10-50% centrality interval is found to be
26-33% at 95% confidence level.Comment: 20 pages, 6 captioned figures, 1 tables, authors from page 15,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/382
Energy dependence of exclusive photoproduction off protons in ultra-peripheral p-Pb collisions at = 5.02 TeV
The ALICE Collaboration has measured the energy dependence of exclusive
photoproduction of vector mesons off proton targets in
ultra-peripheral p-Pb collisions at a centre-of-mass energy per nucleon pair
TeV. The ee and decay channels
are used to measure the cross section as a function of the rapidity of the
in the range , corresponding to an energy in the
p centre-of-mass in the interval GeV.
The measurements, which are consistent with a power law dependence of the
exclusive photoproduction cross section, are compared to previous
results from HERA and the LHC and to several theoretical models. They are found
to be compatible with previous measurements.Comment: 25 pages, 3 captioned figures, 3 tables, authors from page 19,
published version, figures at http://alice-publications.web.cern.ch/node/455
Measurement of the production of charm jets tagged with D mesons in pp collisions at = 7 TeV
The production of charm jets in proton-proton collisions at a center-of-mass
energy of TeV was measured with the ALICE detector at the CERN
Large Hadron Collider. The measurement is based on a data sample corresponding
to a total integrated luminosity of , collected using a
minimum-bias trigger. Charm jets are identified by the presence of a D
meson among their constituents. The D mesons are reconstructed from their
hadronic decay DK. The D-meson tagged jets are
reconstructed using tracks of charged particles (track-based jets) with the
anti- algorithm in the jet transverse momentum range
and pseudorapidity
. The fraction of charged jets containing a D-meson
increases with from to . The distribution of D-meson tagged jets as a
function of the jet momentum fraction carried by the D meson in the
direction of the jet axis () is reported for two ranges
of jet transverse momenta, and
in the intervals
and , respectively. The
data are compared with results from Monte Carlo event generators (PYTHIA 6,
PYTHIA 8 and Herwig 7) and with a Next-to-Leading-Order perturbative Quantum
Chromodynamics calculation, obtained with the POWHEG method and interfaced with
PYTHIA 6 for the generation of the parton shower, fragmentation, hadronisation
and underlying event.Comment: 29 pages, 8 captioned figures, 3 tables, authors from page 24,
published version, figures at http://alice-publications.web.cern.ch/node/525
Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions
This report reviews the study of open heavy-flavour and quarkonium production
in high-energy hadronic collisions, as tools to investigate fundamental aspects
of Quantum Chromodynamics, from the proton and nucleus structure at high energy
to deconfinement and the properties of the Quark-Gluon Plasma. Emphasis is
given to the lessons learnt from LHC Run 1 results, which are reviewed in a
global picture with the results from SPS and RHIC at lower energies, as well as
to the questions to be addressed in the future. The report covers heavy flavour
and quarkonium production in proton-proton, proton-nucleus and nucleus-nucleus
collisions. This includes discussion of the effects of hot and cold strongly
interacting matter, quarkonium photo-production in nucleus-nucleus collisions
and perspectives on the study of heavy flavour and quarkonium with upgrades of
existing experiments and new experiments. The report results from the activity
of the SaporeGravis network of the I3 Hadron Physics programme of the European
Union 7th Framework Programme
In Silico and Biochemical Analysis of Physcomitrella patens Photosynthetic Antenna: Identification of Subunits which Evolved upon Land Adaptation
Background. In eukaryotes the photosynthetic antenna system is composed of subunits encoded by the light harvesting complex (Lhc) multigene family. These proteins play a key role in photosynthesis and are involved in both light harvesting and photoprotection. The moss Physcomitrella patens is a member of a lineage that diverged from seed plants early after land colonization and therefore by studying this organism, we may gain insight into adaptations to the aerial environment.
Principal Findings. In this study, we characterized the antenna protein multigene family in Physcomitrella patens, by sequence analysis as well as biochemical and functional investigations. Sequence identification and analysis showed that some antenna polypeptides, such as Lhcb3 and Lhcb6, are present only in land organisms, suggesting they play a role in adaptation to the sub-aerial environment. Our functional analysis which showed that photo-protective mechanisms in Physcomitrella patens are very similar to those in seed plants fits with this hypothesis. In particular, Physcomitrella patens also activates Non Photochemical Quenching upon illumination, consistent with the detection of an ortholog of the PsbS protein. As a further adaptation to terrestrial conditions, the content of Photosystem I low energy absorbing chlorophylls also increased, as demonstrated by differences in Lhca3 and Lhca4 polypeptide sequences, in vitro reconstitution experiments and low temperature fluorescence spectra.
Conclusions. This study highlights the role of Lhc family members in environmental adaptation and allowed proteins associated with mechanisms of stress resistance to be identified within this large family
One-step isolation and biochemical characterization of a highlyactive plant PSII monomeric core
We describe a one-step detergent solubilization protocol for isolating a highly active form of Photosystem II (PSII) from Pisum sativum L. Detailed characterization of the preparation showed that the complex was a monomer having no light harvesting proteins attached. This core reaction centre complex had, however, a range of low molecular mass intrinsic proteins as well as the chlorophyll binding proteins CP43 and CP47 and the reaction centre proteins D1 and D2. Of particular note was the presence of a stoichiometric level of PsbW, a low molecular weight protein not present in PSII of cyanobacteria. Despite the high oxygen evolution rate, the core complex did not retain the PsbQ extrinsic protein although there was close to a full complement of PsbO and PsbR and partial level of PsbP. However, reconstitution of PsbP and PsbPQ was possible. The presence of PsbP in absence of LHCII and other chlorophyll a/b binding proteins confirms that LHCII proteins are not a strict requirement for the assembly of this extrinsic polypeptide to the PSII core in contrast with the conclusion of Caffarri et al. (2009)
INFN What Next: Ultra-relativistic Heavy-Ion Collisions
This document was prepared by the community that is active in Italy, within
INFN (Istituto Nazionale di Fisica Nucleare), in the field of
ultra-relativistic heavy-ion collisions. The experimental study of the phase
diagram of strongly-interacting matter and of the Quark-Gluon Plasma (QGP)
deconfined state will proceed, in the next 10-15 years, along two directions:
the high-energy regime at RHIC and at the LHC, and the low-energy regime at
FAIR, NICA, SPS and RHIC. The Italian community is strongly involved in the
present and future programme of the ALICE experiment, the upgrade of which will
open, in the 2020s, a new phase of high-precision characterisation of the QGP
properties at the LHC. As a complement of this main activity, there is a
growing interest in a possible future experiment at the SPS, which would target
the search for the onset of deconfinement using dimuon measurements. On a
longer timescale, the community looks with interest at the ongoing studies and
discussions on a possible fixed-target programme using the LHC ion beams and on
the Future Circular Collider.Comment: 99 pages, 56 figure
- …