10 research outputs found
Cellular immune response in infected mice to NSP protein encoded by the negative strand NS RNA of influenza A virus
Influenza A virus belongs to a family of enveloped viruses with an RNA genome of negative polarity consisting of 8 RNA segments. The transcription of this RNA genome results in the synthesis of positive-sense mRNAs that translate up to 16 unique viral proteins with the help of splicing and translational shift mechanisms. The 8th NS segment encodes the NS1 protein (27 kDa), which is an active interferon antagonist, and the nuclear export protein NEP (14 kDa) through the standard negative polarity pathway. In addition, an alternative open reading frame for the synthesis of a third viral protein (NSP, negative-strand protein) by means of a direct translation of genome polarity RNA (the so-called positive polarity genome strategy) was identified in the NS segment. Since it is unknown as to whether the NSP protein can be synthesized in the infected organism post viral infection, the generation of spleen leucocytes specific to this protein was studied in mice after two sequential infections with influenza A viruses of H1N1 and H3N2 subtypes. It was found that leucocyte clones specifically recognizing a peptide domain in the central region of the NSP protein (amino acid positions 82-119) were generated in mice infected with influenza A viruses. In silico prediction has shown strong major histocompatibility complex-1 (MHC-I) and MHC-II specific epitopes in this central domain of the NSP. Comparative analysis of the influenza H3N2 viruses circulating in humans during 1968-2018 has shown high NSP variability, which was similar to that shown for the hemagglutinin (HA) and neuraminidase (NA) proteins. The highest variability was found to be in the N- and C-terminal parts of the NSP. These observations suggest that synthesis of the NSP protein occurs in infected animals and further support a bipolar (ambisense) strategy of the RNA genome of human influenza A virus.Influenza A virus belongs to a family of enveloped viruses with an RNA genome of negative polarity consisting of 8 RNA segments. The transcription of this RNA genome results in the synthesis of positive-sense mRNAs that translate up to 16 unique viral proteins with the help of splicing and translational shift mechanisms. The 8th NS segment encodes the NS1 protein (27 kDa), which is an active interferon antagonist, and the nuclear export protein NEP (14 kDa) through the standard negative polarity pathway. In addition, an alternative open reading frame for the synthesis of a third viral protein (NSP, negative-strand protein) by means of a direct translation of genome polarity RNA (the so-called positive polarity genome strategy) was identified in the NS segment. Since it is unknown as to whether the NSP protein can be synthesized in the infected organism post viral infection, the generation of spleen leucocytes specific to this protein was studied in mice after two sequential infections with influenza A viruses of H1N1 and H3N2 subtypes. It was found that leucocyte clones specifically recognizing a peptide domain in the central region of the NSP protein (amino acid positions 82-119) were generated in mice infected with influenza A viruses. In silico prediction has shown strong major histocompatibility complex-1 (MHC-I) and MHC-II specific epitopes in this central domain of the NSP. Comparative analysis of the influenza H3N2 viruses circulating in humans during 1968-2018 has shown high NSP variability, which was similar to that shown for the hemagglutinin (HA) and neuraminidase (NA) proteins. The highest variability was found to be in the N- and C-terminal parts of the NSP. These observations suggest that synthesis of the NSP protein occurs in infected animals and further support a bipolar (ambisense) strategy of the RNA genome of human influenza A virus
ΠΠ»Π΅ΡΠΎΡΠ½ΡΠΉ ΠΈΠΌΠΌΡΠ½Π½ΡΠΉ ΠΎΡΠ²Π΅Ρ Ρ ΠΈΠ½ΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ ΠΏΡΠΎΡΠΈΠ² Π±Π΅Π»ΠΊΠ° NSP, ΠΊΠΎΠ΄ΠΈΡΡΠ΅ΠΌΠΎΠ³ΠΎ Π½Π΅Π³Π°ΡΠΈΠ²Π½ΠΎΠΉ ΡΠ΅ΠΏΡΡ NS RNA Π²ΠΈΡΡΡΠ° Π³ΡΠΈΠΏΠΏΠ° Π
Influenza A virus belongs to a family of enveloped viruses with an RNA genome of negative polarity consisting of 8 RNA segments. The transcription of this RNA genome results in the synthesis of positive-sense mRNAs that translate up to 16 unique viral proteins with the help of splicing and translational shift mechanisms. The 8th NS segment encodes the NS1 protein (27 kDa), which is an active interferon antagonist, and the nuclear export protein NEP (14 kDa) through the standard negative polarity pathway. In addition, an alternative open reading frame for the synthesis of a third viral protein (NSP, negative-strand protein) by means of a direct translation of genome polarity RNA (the so-called positive polarity genome strategy) was identified in the NS segment. Since it is unknown as to whether the NSP protein can be synthesized in the infected organism post viral infection, the generation of spleen leucocytes specific to this protein was studied in mice after two sequential infections with influenza A viruses of H1N1 and H3N2 subtypes. It was found that leucocyte clones specifically recognizing a peptide domain in the central region of the NSP protein (amino acid positions 82-119) were generated in mice infected with influenza A viruses. In silico prediction has shown strong major histocompatibility complex-1 (MHC-I) and MHC-II specific epitopes in this central domain of the NSP. Comparative analysis of the influenza H3N2 viruses circulating in humans during 1968-2018 has shown high NSP variability, which was similar to that shown for the hemagglutinin (HA) and neuraminidase (NA) proteins. The highest variability was found to be in the N- and C-terminal parts of the NSP. These observations suggest that synthesis of the NSP protein occurs in infected animals and further support a bipolar (ambisense) strategy of the RNA genome of human influenza A virus.ΠΠΈΡΡΡ Π³ΡΠΈΠΏΠΏΠ° Π ΠΎΡΠ½ΠΎΡΠΈΡΡΡ ΠΊ ΠΎΠ±ΠΎΠ»ΠΎΡΠ΅ΡΠ½ΡΠΌ RNA-ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠΌ Π²ΠΈΡΡΡΠ°ΠΌ Ρ Π½Π΅Π³Π°ΡΠΈΠ²Π½ΠΎ-ΠΏΠΎΠ»ΡΡΠ½ΡΠΌ Π³Π΅Π½ΠΎΠΌΠΎΠΌ, ΡΠΎΡΡΠΎΡΡΠΈΠΌ ΠΈΠ· 8 ΡΠ΅Π³ΠΌΠ΅Π½ΡΠΎΠ² RNA, ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ
ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΌΠ°ΡΡΠΈΡΠ΅ΠΉ Π΄Π»Ρ ΡΠΈΠ½ΡΠ΅Π·Π° ΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΠΎ-ΠΏΠΎΠ»ΡΡΠ½ΡΡ
mRNA, ΠΊΠΎΡΠΎΡΡΠ΅, Π² ΡΠ²ΠΎΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ, ΡΠ»ΡΠΆΠ°Ρ ΠΌΠ°ΡΡΠΈΡΠ΅ΠΉ Π΄Π»Ρ ΡΠΈΠ½ΡΠ΅Π·Π° 16 Π²ΠΈΡΡΡΠ½ΡΡ
Π±Π΅Π»ΠΊΠΎΠ² Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π΄Π»Ρ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ
ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠ° ΡΠΏΠ»Π°ΠΉΡΠΈΠ½Π³Π° ΠΈΠ»ΠΈ ΡΡΠ°Π½ΡΠ»ΡΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠΈΡΡΠ°. ΠΠΎΡΡΠΌΠΎΠΉ ΡΠ΅Π³ΠΌΠ΅Π½Ρ NS ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²ΠΎΠΌ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½Π΅Π³Π°ΡΠΈΠ²Π½ΠΎΠΉ ΡΡΡΠ°ΡΠ΅Π³ΠΈΠΈ Π³Π΅Π½ΠΎΠΌΠ° ΠΊΠΎΠ΄ΠΈΡΡΠ΅Ρ Π±Π΅Π»ΠΎΠΊ NS1, ΠΎΠ±Π»Π°Π΄Π°ΡΡΠΈΠΉ Π°Π½ΡΠΈ-ΠΈΠ½ΡΠ΅ΡΡΠ΅ΡΠΎΠ½ΠΎΠ²ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ (27 ΠΊΠΠ°), ΠΈ Π±Π΅Π»ΠΎΠΊ ΡΠ΄Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠΊΡΠΏΠΎΡΡΠ° NEP (NS2) (nuclear export protein, 14 ΠΊΠΠ°). ΠΡΠΎΠΌΠ΅ ΡΡΠΎΠ³ΠΎ, Π² ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ΅ NS ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½Π° Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½Π°Ρ ΠΎΡΠΊΡΡΡΠ°Ρ ΡΠ°ΠΌΠΊΠ° Π΄Π»Ρ ΡΠΈΠ½ΡΠ΅Π·Π° ΡΡΠ΅ΡΡΠ΅Π³ΠΎ Π²ΠΈΡΡΡΠ½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° ΠΏΠΎ Π°Π»ΡΡΠ΅ΡΠ½Π°ΡΠΈΠ²Π½ΠΎΠΌΡ ΠΏΡΡΠΈ ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²ΠΎΠΌ ΠΏΡΡΠΌΠΎΠΉ ΡΡΠ°Π½ΡΠ»ΡΡΠΈΠΈ Π½Π΅Π³Π°ΡΠΈΠ²Π½ΠΎ ΠΏΠΎΠ»ΡΡΠ½ΠΎΠΉ Π²ΠΈΡΡΡΠ½ΠΎΠΉ RNA. ΠΡΠ° ΡΡΡΠ°ΡΠ΅Π³ΠΈΡ Π³Π΅Π½ΠΎΠΌΠ° ΠΏΠΎΠ»ΡΡΠΈΠ»Π° Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΠΎ-ΠΏΠΎΠ»ΡΡΠ½ΠΎΠΉ. ΠΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄Π°Π½Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ°, Π½Π°Π·Π²Π°Π½Π½ΠΎΠ³ΠΎ NSP (negative strand protein), ΠΏΡΠΈ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΈ Π²ΠΈΡΡΡΠ° Π³ΡΠΈΠΏΠΏΠ° Π Π² ΡΠ΅Π»ΠΎΡΡΠ½ΠΎΠΌ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ΅ ΠΏΠΎΠΊΠ° Π½Π΅ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ. ΠΠ½Π°Π»ΠΈΠ· Π±Π΅Π»ΠΊΠ° NSP in silico Π²ΡΡΠ²ΠΈΠ» Π½Π°Π»ΠΈΡΠΈΠ΅ Π΄ΠΎΠΌΠ΅Π½ΠΎΠ² MHC-I (major histocompatibility complex-1) ΠΈ MHC-II. Π‘ΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· Π²ΠΈΡΡΡΠΎΠ² Π³ΡΠΈΠΏΠΏΠ° ΠΏΠΎΠ΄ΡΠΈΠΏΠ° H3N2, ΡΠΈΡΠΊΡΠ»ΠΈΡΠΎΠ²Π°Π²ΡΠΈΡ
ΡΡΠ΅Π΄ΠΈ Π»ΡΠ΄Π΅ΠΉ Π² ΠΏΠ΅ΡΠΈΠΎΠ΄ Ρ 1968 ΠΏΠΎ 2018 Π³Π³., ΠΏΠΎΠΊΠ°Π·Π°Π» Π²ΡΡΠΎΠΊΡΡ ΠΈΠ·ΠΌΠ΅Π½ΡΠΈΠ²ΠΎΡΡΡ Π³Π΅Π½Π° Π±Π΅Π»ΠΊΠ° NSP, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΡ
ΠΎΠ΄Π½Π° Ρ ΠΈΠ·ΠΌΠ΅Π½ΡΠΈΠ²ΠΎΡΡΡΡ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΡΡ
Π±Π΅Π»ΠΊΠΎΠ² Π³Π΅ΠΌΠ°Π³Π³Π»ΡΡΠΈΠ½ΠΈΠ½Π° (HA) ΠΈ Π½Π΅ΠΉΡΠ°ΠΌΠΈΠ½ΠΈΠ΄Π°Π·Ρ (NA). ΠΠ°ΠΈΠ±ΠΎΠ»ΡΡΠ°Ρ ΠΈΠ·ΠΌΠ΅Π½ΡΠΈΠ²ΠΎΡΡΡ ΠΎΠ±Π½Π°ΡΡΠΆΠΈΠ²Π°Π»Π°ΡΡ Π² Π·ΠΎΠ½Π°Ρ
, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ
N- ΠΈ C-ΠΊΠΎΠ½ΡΠ΅Π²ΡΠΌ ΡΡΠ°ΡΡΠΊΠ°ΠΌ Π±Π΅Π»ΠΊΠ° NSP. Π Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΠΈΠ·ΡΡΠ΅Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΈΠΌΠΌΡΠ½Π½ΡΡ
Π»Π΅ΠΉΠΊΠΎΡΠΈΡΠΎΠ², ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΡΡ
ΠΊ Π±Π΅Π»ΠΊΡ NSP, Ρ ΠΌΡΡΠ΅ΠΉ ΠΏΠΎΡΠ»Π΅ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΈ Π²ΠΈΡΡΡΠΎΠΌ Π³ΡΠΈΠΏΠΏΠ° Π. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Ρ ΠΌΡΡΠ΅ΠΉ ΠΏΠΎΡΠ»Π΅ Π·Π°ΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ Π΄Π²ΡΠΌΡ Π²ΠΈΡΡΡΠ°ΠΌΠΈ Π³ΡΠΈΠΏΠΏΠ° Π ΡΠ°Π·Π½ΡΡ
ΡΠ΅ΡΠΎΠΏΠΎΠ΄ΡΠΈΠΏΠΎΠ² ΠΎΠ±Π½Π°ΡΡΠΆΠΈΠ²Π°ΡΡΡΡ ΠΈΠΌΠΌΡΠ½Π½ΡΠ΅ Π»Π΅ΠΉΠΊΠΎΡΠΈΡΡ, ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈ ΡΠ°ΡΠΏΠΎΠ·Π½Π°ΡΡΠΈΠ΅ Π²ΠΈΡΡΡΠ½ΡΠ΅ Π΄ΠΎΠΌΠ΅Π½Ρ Π² ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΠΎΠΉ Π·ΠΎΠ½Π΅ Π±Π΅Π»ΠΊΠ° NSP (ΠΏΠΎΠ·ΠΈΡΠΈΠΈ Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡ 82-119). ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ Ρ Π±ΠΎΠ»ΡΡΠΎΠΉ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΡΡΠ²Π΅ΡΠΆΠ΄Π°ΡΡ, ΡΡΠΎ ΠΏΡΠΈ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΈ Π²ΠΈΡΡΡΠΎΠΌ Π³ΡΠΈΠΏΠΏΠ° Π Π² ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ΅ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ
ΠΈΠΌΠ΅Π΅Ρ ΠΌΠ΅ΡΡΠΎ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡ Π³Π΅Π½Π° NSP, ΡΡΠΎ Π² ΡΠ²ΠΎΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π°Π΅Ρ ΠΊΠΎΠ½ΡΠ΅ΠΏΡΠΈΡ ΠΎ Π±ΠΈΠΏΠΎΠ»ΡΡΠ½ΠΎΠΉ (Π°ΠΌΠ±ΠΈΡΠ΅Π½Ρ) ΡΡΡΠ°ΡΠ΅Π³ΠΈΠΈ Π³Π΅Π½ΠΎΠΌΠ° Π²ΠΈΡΡΡΠ° Π³ΡΠΈΠΏΠΏΠ° Π