10 research outputs found

    Cellular immune response in infected mice to NSP protein encoded by the negative strand NS RNA of influenza A virus

    Get PDF
    Influenza A virus belongs to a family of enveloped viruses with an RNA genome of negative polarity consisting of 8 RNA segments. The transcription of this RNA genome results in the synthesis of positive-sense mRNAs that translate up to 16 unique viral proteins with the help of splicing and translational shift mechanisms. The 8th NS segment encodes the NS1 protein (27 kDa), which is an active interferon antagonist, and the nuclear export protein NEP (14 kDa) through the standard negative polarity pathway. In addition, an alternative open reading frame for the synthesis of a third viral protein (NSP, negative-strand protein) by means of a direct translation of genome polarity RNA (the so-called positive polarity genome strategy) was identified in the NS segment. Since it is unknown as to whether the NSP protein can be synthesized in the infected organism post viral infection, the generation of spleen leucocytes specific to this protein was studied in mice after two sequential infections with influenza A viruses of H1N1 and H3N2 subtypes. It was found that leucocyte clones specifically recognizing a peptide domain in the central region of the NSP protein (amino acid positions 82-119) were generated in mice infected with influenza A viruses. In silico prediction has shown strong major histocompatibility complex-1 (MHC-I) and MHC-II specific epitopes in this central domain of the NSP. Comparative analysis of the influenza H3N2 viruses circulating in humans during 1968-2018 has shown high NSP variability, which was similar to that shown for the hemagglutinin (HA) and neuraminidase (NA) proteins. The highest variability was found to be in the N- and C-terminal parts of the NSP. These observations suggest that synthesis of the NSP protein occurs in infected animals and further support a bipolar (ambisense) strategy of the RNA genome of human influenza A virus.Influenza A virus belongs to a family of enveloped viruses with an RNA genome of negative polarity consisting of 8 RNA segments. The transcription of this RNA genome results in the synthesis of positive-sense mRNAs that translate up to 16 unique viral proteins with the help of splicing and translational shift mechanisms. The 8th NS segment encodes the NS1 protein (27 kDa), which is an active interferon antagonist, and the nuclear export protein NEP (14 kDa) through the standard negative polarity pathway. In addition, an alternative open reading frame for the synthesis of a third viral protein (NSP, negative-strand protein) by means of a direct translation of genome polarity RNA (the so-called positive polarity genome strategy) was identified in the NS segment. Since it is unknown as to whether the NSP protein can be synthesized in the infected organism post viral infection, the generation of spleen leucocytes specific to this protein was studied in mice after two sequential infections with influenza A viruses of H1N1 and H3N2 subtypes. It was found that leucocyte clones specifically recognizing a peptide domain in the central region of the NSP protein (amino acid positions 82-119) were generated in mice infected with influenza A viruses. In silico prediction has shown strong major histocompatibility complex-1 (MHC-I) and MHC-II specific epitopes in this central domain of the NSP. Comparative analysis of the influenza H3N2 viruses circulating in humans during 1968-2018 has shown high NSP variability, which was similar to that shown for the hemagglutinin (HA) and neuraminidase (NA) proteins. The highest variability was found to be in the N- and C-terminal parts of the NSP. These observations suggest that synthesis of the NSP protein occurs in infected animals and further support a bipolar (ambisense) strategy of the RNA genome of human influenza A virus

    ΠšΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΉ ΠΈΠΌΠΌΡƒΠ½Π½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚ Ρƒ ΠΈΠ½Ρ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… ΠΏΡ€ΠΎΡ‚ΠΈΠ² Π±Π΅Π»ΠΊΠ° NSP, ΠΊΠΎΠ΄ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Ρ†Π΅ΠΏΡŒΡŽ NS RNA вируса Π³Ρ€ΠΈΠΏΠΏΠ° А

    Get PDF
    Influenza A virus belongs to a family of enveloped viruses with an RNA genome of negative polarity consisting of 8 RNA segments. The transcription of this RNA genome results in the synthesis of positive-sense mRNAs that translate up to 16 unique viral proteins with the help of splicing and translational shift mechanisms. The 8th NS segment encodes the NS1 protein (27 kDa), which is an active interferon antagonist, and the nuclear export protein NEP (14 kDa) through the standard negative polarity pathway. In addition, an alternative open reading frame for the synthesis of a third viral protein (NSP, negative-strand protein) by means of a direct translation of genome polarity RNA (the so-called positive polarity genome strategy) was identified in the NS segment. Since it is unknown as to whether the NSP protein can be synthesized in the infected organism post viral infection, the generation of spleen leucocytes specific to this protein was studied in mice after two sequential infections with influenza A viruses of H1N1 and H3N2 subtypes. It was found that leucocyte clones specifically recognizing a peptide domain in the central region of the NSP protein (amino acid positions 82-119) were generated in mice infected with influenza A viruses. In silico prediction has shown strong major histocompatibility complex-1 (MHC-I) and MHC-II specific epitopes in this central domain of the NSP. Comparative analysis of the influenza H3N2 viruses circulating in humans during 1968-2018 has shown high NSP variability, which was similar to that shown for the hemagglutinin (HA) and neuraminidase (NA) proteins. The highest variability was found to be in the N- and C-terminal parts of the NSP. These observations suggest that synthesis of the NSP protein occurs in infected animals and further support a bipolar (ambisense) strategy of the RNA genome of human influenza A virus.Вирус Π³Ρ€ΠΈΠΏΠΏΠ° А относится ΠΊ ΠΎΠ±ΠΎΠ»ΠΎΡ‡Π΅Ρ‡Π½Ρ‹ΠΌ RNA-содСрТащим вирусам с Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎ-полярным Π³Π΅Π½ΠΎΠΌΠΎΠΌ, состоящим ΠΈΠ· 8 сСгмСнтов RNA, ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… являСтся ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ΠΉ для синтСза ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΎ-полярных mRNA, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅, Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, слуТат ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ΠΉ для синтСза 16 вирусных Π±Π΅Π»ΠΊΠΎΠ² с использованиСм для Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° сплайсинга ΠΈΠ»ΠΈ трансляционного ΡˆΠΈΡ„Ρ‚Π°. Π’ΠΎΡΡŒΠΌΠΎΠΉ сСгмСнт NS посрСдством классичСской Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ стратСгии Π³Π΅Π½ΠΎΠΌΠ° ΠΊΠΎΠ΄ΠΈΡ€ΡƒΠ΅Ρ‚ Π±Π΅Π»ΠΎΠΊ NS1, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΠΉ Π°Π½Ρ‚ΠΈ-ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π΅Ρ€ΠΎΠ½ΠΎΠ²ΠΎΠΉ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ (27 ΠΊΠ”Π°), ΠΈ Π±Π΅Π»ΠΎΠΊ ядСрного экспорта NEP (NS2) (nuclear export protein, 14 ΠΊΠ”Π°). ΠšΡ€ΠΎΠΌΠ΅ этого, Π² сСгмСнтС NS ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π° Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ открытая Ρ€Π°ΠΌΠΊΠ° для синтСза Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅Π³ΠΎ вирусного Π±Π΅Π»ΠΊΠ° ΠΏΠΎ Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½ΠΎΠΌΡƒ ΠΏΡƒΡ‚ΠΈ посрСдством прямой трансляции Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎ полярной вирусной RNA. Π­Ρ‚Π° стратСгия Π³Π΅Π½ΠΎΠΌΠ° ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»Π° Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΎ-полярной. ΠžΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄Π°Π½Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ°, Π½Π°Π·Π²Π°Π½Π½ΠΎΠ³ΠΎ NSP (negative strand protein), ΠΏΡ€ΠΈ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ вируса Π³Ρ€ΠΈΠΏΠΏΠ° А Π² цСлостном ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ΅ ΠΏΠΎΠΊΠ° Π½Π΅ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ. Анализ Π±Π΅Π»ΠΊΠ° NSP in silico выявил Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π΄ΠΎΠΌΠ΅Π½ΠΎΠ² MHC-I (major histocompatibility complex-1) ΠΈ MHC-II. Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· вирусов Π³Ρ€ΠΈΠΏΠΏΠ° ΠΏΠΎΠ΄Ρ‚ΠΈΠΏΠ° H3N2, Ρ†ΠΈΡ€ΠΊΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π²ΡˆΠΈΡ… срСди людСй Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ с 1968 ΠΏΠΎ 2018 Π³Π³., ΠΏΠΎΠΊΠ°Π·Π°Π» Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΠΈΠ·ΠΌΠ΅Π½Ρ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ Π³Π΅Π½Π° Π±Π΅Π»ΠΊΠ° NSP, которая сходна с ΠΈΠ·ΠΌΠ΅Π½Ρ‡ΠΈΠ²ΠΎΡΡ‚ΡŒΡŽ повСрхностных Π±Π΅Π»ΠΊΠΎΠ² Π³Π΅ΠΌΠ°Π³Π³Π»ΡŽΡ‚ΠΈΠ½ΠΈΠ½Π° (HA) ΠΈ Π½Π΅ΠΉΡ€Π°ΠΌΠΈΠ½ΠΈΠ΄Π°Π·Ρ‹ (NA). Наибольшая ΠΈΠ·ΠΌΠ΅Π½Ρ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ²Π°Π»Π°ΡΡŒ Π² Π·ΠΎΠ½Π°Ρ…, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… N- ΠΈ C-ΠΊΠΎΠ½Ρ†Π΅Π²Ρ‹ΠΌ участкам Π±Π΅Π»ΠΊΠ° NSP. Π’ настоящСй Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΈΠ·ΡƒΡ‡Π΅Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ образования ΠΈΠΌΠΌΡƒΠ½Π½Ρ‹Ρ… Π»Π΅ΠΉΠΊΠΎΡ†ΠΈΡ‚ΠΎΠ², спСцифичных ΠΊ Π±Π΅Π»ΠΊΡƒ NSP, Ρƒ ΠΌΡ‹ΡˆΠ΅ΠΉ послС ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ вирусом Π³Ρ€ΠΈΠΏΠΏΠ° А. Показано, Ρ‡Ρ‚ΠΎ Ρƒ ΠΌΡ‹ΡˆΠ΅ΠΉ послС зараТСния ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ двумя вирусами Π³Ρ€ΠΈΠΏΠΏΠ° А Ρ€Π°Π·Π½Ρ‹Ρ… сСроподтипов ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΈΠΌΠΌΡƒΠ½Π½Ρ‹Π΅ Π»Π΅ΠΉΠΊΠΎΡ†ΠΈΡ‚Ρ‹, спСцифичСски Ρ€Π°ΡΠΏΠΎΠ·Π½Π°ΡŽΡ‰ΠΈΠ΅ вирусныС Π΄ΠΎΠΌΠ΅Π½Ρ‹ Π² Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Π·ΠΎΠ½Π΅ Π±Π΅Π»ΠΊΠ° NSP (ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ аминокислот 82-119). ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ с большой Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ вирусом Π³Ρ€ΠΈΠΏΠΏΠ° А Π² ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ΅ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… ΠΈΠΌΠ΅Π΅Ρ‚ мСсто экспрСссия Π³Π΅Π½Π° NSP, Ρ‡Ρ‚ΠΎ Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°Π΅Ρ‚ ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΡŽ ΠΎ биполярной (амбисСнс) стратСгии Π³Π΅Π½ΠΎΠΌΠ° вируса Π³Ρ€ΠΈΠΏΠΏΠ° А

    Evolution of Influenza Viruses

    No full text
    corecore