2,895 research outputs found

    Break-up mechanisms in heavy ion collisions at low energies

    Full text link
    We investigate reaction mechanisms occurring in heavy ion collisions at low energy (around 20 MeV/u). In particular, we focus on the competition between fusion and break-up processes (Deep-Inelastic and fragmentation) in semi-peripheral collisions, where the formation of excited systems in various conditions of shape and angular momentum is observed. Adopting a Langevin treatment for the dynamical evolution of the system configuration, described in terms of shape observables such as quadrupole and octupole moments, we derive fusion/fission probabilities, from which one can finally evaluate the corresponding fusion and break-up cross sections. The dependence of the results on shape, angular momentum and excitation energy is discussed.Comment: submitted to Physical Review

    Investigation of collective radial expansion and stopping in heavy ion collisions at Fermi energies

    Get PDF
    We present an analysis of multifragmentation events observed in central Xe+Sn reactions at Fermi energies. Performing a comparison between the predictions of the Stochastic Mean Field (SMF) transport model and experimental data, we investigate the impact of the compression-expansion dynamics on the properties of the final reaction products. We show that the amount of radial collective expansion, which characterizes the dynamical stage of the reaction, influences directly the onset of multifragmentation and the kinematic properties of multifragmentation events. For the same set of events we also undertake a shape analysis in momentum space, looking at the degree of stopping reached in the collision, as proposed in recent experimental studies. We show that full stopping is achieved for the most central collisions at Fermi energies. However, considering the same central event selection as in the experimental data, we observe a similar behavior of the stopping power with the beam energy, which can be associated with a change of the fragmentation mechanism, from statistical to prompt fragment emission.Comment: 15 page

    Spinodal instabilities within BUU approach

    Get PDF
    Using a recently developed method for the inclusion of fluctuation in the BUU dynamics, we study the self-consistent propagation of inherent thermal noise of unstable nuclear matter. The large time behaviour of the evolving system exhibits synergism between fluctuation and non-linearities in a universal manner which manifest in the appearance of macroscopic structure in the average description.Comment: 12 pages Revtex. Two figures, uuencoded, are enclosed in a separate fil

    Nuclear collective dynamics within Vlasov approach

    Full text link
    We discuss, in an investigation based on Vlasov equation, the properties of the isovector modes in nuclear matter and atomic nuclei in relation with the symmetry energy. We obtain numerically the dipole response and determine the strength function for various systems, including a chain of Sn isotopes. We consider for the symmetry energy three parametrizations with density providing similar values at saturation but which manifest very different slopes around this point. In this way we can explore how the slope affects the collective response of finite nuclear systems. We focus first on the dipole polarizability and show that while the model is able to describe the expected mass dependence, A^{5/3}, it also demonstrates that this quantity is sensitive to the slope parameter of the symmetry energy. Then, by considering the Sn isotopic chain, we investigate the emergence of a collective mode, the Pygmy Dipole Resonance (PDR), when the number of neutrons in excess increases. We show that the total energy-weighted sum rule exhausted by this mode has a linear dependence with the square of isospin I=(N-Z)/A, again sensitive to the slope of the symmetry energy with density. Therefore the polarization effects in the isovector density have to play an important role in the dynamics of PDR. These results provide additional hints in the investigations aiming to extract the properties of symmetry energy below saturation.Comment: 7 pages, 6 figure

    Spinodal decomposition of expanding nuclear matter and multifragmentation

    Full text link
    Density fluctuations of expanding nuclear matter are studied within a mean-field model in which fluctuations are generated by an external stochastic field. Fluctuations develop about a mean one-body phase-space density corresponding to a hydrodinamic motion that describes a slow expansion of the system. A fluctuation-dissipation relation suitable for a uniformly expanding medium is obtained and used to constrain the strength of the stochastic field. The distribution of the liquid domains in the spinodal decomposition is derived. Comparison of the related distribution of the fragment size with experimental data on the nuclear multifragmentation is quite satisfactory.Comment: 19 RevTex4 pages, 6 eps figures, to appear in Phys. Rev.

    The Dynamical Dipole Mode in Fusion Reactions with Exotic Nuclear Beams

    Full text link
    We report the properties of the prompt dipole radiation, produced via a collective bremsstrahlung mechanism, in fusion reactions with exotic beams. We show that the gamma yield is sensitive to the density dependence of the symmetry energy below/around saturation. Moreover we find that the angular distribution of the emitted photons from such fast collective mode can represent a sensitive probe of its excitation mechanism and of fusion dynamics in the entrance channel.Comment: 5 pages, 3 figures, to appear in Phys.Rev.

    Isospin fluctuations in spinodal decomposition

    Full text link
    We study the isospin dynamics in fragment formation within the framework of an analytical model based on the spinodal decomposition scenario. We calculate the probability to obtain fragments with given charge and neutron number, focussing on the derivation of the width of the isotopic distributions. Within our approach this is determined by the dispersion of N/Z among the leading unstable modes, due to the competition between Coulomb and symmetry energy effects, and by isovector-like fluctuations present in the matter that undergoes the spinodal decomposition. Hence the widths exhibit a clear dependence on the properties of the Equation of State. By comparing two systems with different values of the charge asymmetry we find that the isotopic distributions reproduce an isoscaling relationship.Comment: 18 RevTex4 pages, 6 eps figure
    • …
    corecore