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Abstract

Using a recently developed method for the inclusion of fluctuation in the

BUU dynamics, we study the self-consistent propagation of inherent thermal

noise of unstable nuclear matter. The large time behaviour of the evolving

system exhibits synergism between fluctuation and non-linearities in a uni-

versal manner which manifest in the appearance of macroscopic structure in

the average description.
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In recent years a considerable interest has grown in the understanding of the role of fluc-

tuation in the dynamics of multifragmentation. In the decompression phase of the collision,

the density of the composite nuclear system eventually attains such a low value so that it

crosses the boundary of the so called spinodal zone where a small perturbation can grow

rapidly until the fragments form. The fluctuation certainly plays a significant role in the

process of fragmentation. To unravel some basic features of such delicate process simple

model study seems encouraging. For this purpose, different theoretical approaches based on

Landau [1,2] or Boltzmann-Uhling-Ulhenbeck (BUU) [3] equation have been utilized.

Let us concentrate on the BUU approach to the problem. In this model, the description

of the process is governed by the evolution of reduced one body density distribution. In the

mean field approximation, the fluctuations arising from the stochastic part of the collision

term are ignored and evolution of a single average effective density is considered only. In this

description the bundle of trajectories are confined in a certain region of the associated phase

space. The presence of collision term in the equation corresponds to the dissipative effect

in the evolution. When the system reaches the point of instability where any fluctuation,

however, small it is, amplifies indefinitely so that trajectories may bifurcate and drive the

system to some new fixed point. In other words, different manifestation of the system are

now become accessible dynamically. Therefore, the mean trajectory description has been

lost. To encounter such a situation, the general strategy is to study the evolution of a

collection of initially prepared samples. Due to the very presence of the stochasticity in

the process their fates are different. To make this picture consistent, a usual method is to

introduce a fluctuation term in the equation of motion, so that the nature of the solution

become probabilistic. Within the framework of BUU equation this prescription is properly

incorporated and the resultant evolution equation for phase space density is commonly

known as the Boltzmann-Langevin (BL) equation [4].

Guided by the same physical principle, several computational schemes have been pro-

posed to incorporate fluctuation in the BUU equation [5,6]. In this context, we want to

mention a very recent development (see Ref. [7] where a novel method of simulation is pro-
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posed to incorporate fluctuations in the BUU equation. The occupancy factor n(r,p) at

a particular elementary cell ∆s of size ∆r∆p/hD (D the dimension of the physical space)

around a point (r,p) in the associated phase space of the one body description of the system

is considered to be discrete in nature so that it takes the value 1 (say success) or 0 (failure)

otherwise. The basic transition probability (say, 12→ 1′2′) within a small interval of time is

given by T (12 → 1′2′) = ω12→1′2′∆t∆s4n1n2n̄1′n̄2′ where ω12→1′2′∆s4 is the basic transition

rate. For a particular transition, every sample is tried with a probability of success ω∆t∆s4.

However due to the presence of four occupancy factors in the above relation a successful

transition occur when an appropriate configuration of particle and hole states appeared in a

sample. By this way enough fluctuation in sample space can be generated and at the same

time, the relevant statistical criteria i.e. σ2
i = 〈n〉i〈n̄〉i can be fulfilled exactly for every cell

i.

Another essential aspect of the simulation is to generate the solution of the Vlasov part

of the BUU equation in the presence of the mean field potential. Due to the discrete nature

of the phase space occupancy n(r,p), the usual procedure of matrix method [3,5] cannot

be applied here properly. To consider Vlasov propagation of phase space distribution we

follow the Nordheim’s approach, closely related to the well known test particle method of

solving Vlasov equation. A filled unit phase cell may be considered as a particle. The time

evolution of these particles can be described by the standard leap-frog algorithm in the

following manner,

Xi
k(t+ ∆t) = Xi

k(t) +
1

m
P i
k∆t ; (1)

P i
k(t+ ∆t) = P i

k(t) +∇kU(ρ(r, t))∆t (2)

where (Xi
k(t), P

i
k(t)) represent the kth component of position and momentum of the ith

particle at time t. It is important to note that unlike to the test particle method the position

and also momentum of the particle are represented by the grid points here, therefore, its

evolution with time take places in discrete steps. However to provide a reasonably good

energy conserving evolution, we incorporate a modification in the leap-frog routine. The
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error comes mainly due to the rounding off the quantitiesXi
k/xd or P i

k/pd where xd and pd are

the co-ordinate and momentum grid spacing. The accumulated error that arise in momentum

due to the incoming particles at a particular spatial cell (say l) is given as ∆p̃lk =
∑
i δp

i
k. Here

δpik is the residual part of P i
k so that P i

k = pd × nearest integer of(P i
k/pd) + δp̃ik. Therefore,

to reduce this error substantially, one may assume that the momentum of all the particles

in a cell l are modified as pd × nearest integer of(
P i
k

pd
) +

∆p̃l
k

Nl
. Here Nl is the total number of

incoming particles in cell l. To check the reliability of this method we consider the evolution

of the breathing mode of a spherical nucleus in 2-dimension having small skin of about 2

fm. We observe two interesting points: 1) the initial spherical symmetry in momentum

and co-ordinate space are maintained exactly and 2) no two particles appear simultaneously

in the same phase cell throughout the evolution. However, it is to be noted that when

fluctuation in phase cell is taken into account by allowing the the collisions among the

particles the above mentioned features are gradually lost. In this situation, the smearing of

the distribution becomes necessary. This is incorporated by simply moving a particle in the

neighbouring sites in momentum space if it tries to access a cell in the process of evolution

which is already filled. In this simulation, the values of xd and pd are taken as 1 fm. and

40∼60 MeV/c respectively. The total energy per particle is found to be conserved up to

95% even at time t = 100 fm/c.

Using the above mentioned simulation procedure the present study revisits the problem of

nuclear matter in spinodal zone. This work mainly concerned about the large time behaviour

of the system and the non-linearities that appear in the process of evolution. To make this

study consistent with earlier investigation we adopt the scenario that was studied rigorously

by several authors [3,5] namely, a gas of fermions situated inside a two dimensional torus.

For the effective one body field at two dimensional grid point (x,y) we employ a simplified

Skyrme interaction U(x, y) = Aρ(x,y)
ρ0

+ B(ρ(x,y)
ρ0

)2 with A = −100.3 MeV, B = 48 MeV,

the saturation density ρ0 = 0.55 fm−2. To evaluate effective potential on the lattice an

averaging over 2-dimensional Gaussian function having width 0.87 is done. The in-medium

cross section is taken as 2.4 fm and Fermi-momentum Pf = 260 MeV/c. For simulation
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we consider the square lattice of size (21×21) in co-ordinate space having width xd = 1

fm., (31×31) in momentum space with pd = 40 MeV/c and the number of samples Ns for

parallel runs are taken to be 100. To ensure that our system is initially situated inside the

spinodal zone we prepare the samples having uniform (in space) average density 〈ρ〉 (or the

number density 〈N〉)=0.5ρ0 (N0) and momentum distribution same as that of a fermi gas

at temperature T = 3 MeV.

At a given temperature T 6= 0 there exists thermal fluctuation in the initial state. To

incorporate this important feature within our simulation procedure we prepare the sam-

ples with the assumption that the distribution of N is given by a Gaussian function with

mean 〈N〉 where as the sample average value of occupancy 〈n〉i is given by the fermi dis-

tribution of appropriate temperature T . The variance σ2
N satisfies the standard relation

σ2
N =

∑
N

∑
σ2
i =

∑
N

∑
〈n〉i〈n̄〉i. To maintain spatial uniformity in initial state, the value

of N or the momentum distribution is considered to be the same at every spatial cell of

a particular sample. Inspite of the fact that at T = 0 all collisions are Pauli blocked, the

symmetry of the system remains intact even by BL treatment used here or the same used

in Ref. [3]. It is to be noted that in this case σ2
N = 0 i.e. all samples are identical. The

presence of the thermal fluctuation in the initial state is in fact, the source of disturbance

which generates irregularities subsequently in co-ordinate space and may amplify due to

the action of the mean field. Hence, to make the picture consistent, the preparation of the

samples in the aforesaid manner is therefore an essential part of our simulation procedure.

Let us now turn to the investigation of the Boltzmann-Langevin dynamics on lattice. The

normal mode analysis of the evolving density will allow us to study the interplay between

instabilities and fluctuations. Following the Ref. [3] we introduce two point correlation

function to the associated density fluctuation as

σk(t) = 〈|δρk(t)|2〉 =
1

L4

∫ L2

dr′
∫ L2

dre−k.|r′−r|〈δρ(r′)δρ(r)〉 (3)

For theoretical analysis of the time evolution of the quantity σk the starting point is to

linearise the Vlasov equation and derive the equation for normal modes (for example see Ref.

5



[8]). In the presence of fluctuation in the transport process the evolution of the amplitude of

the Fourier components (or in other words, that of the collective mode ν) can be represented

by the following Langevin equation

dAν(t)

dt
= iωνAν(t) + B̃ν(t) (4)

where Aν is the two component amplitude matrix (with elements A+
ν and A−ν ) of the Fourier

components of the density fluctuation δfν so that δfν = A+
ν e

iωνt + A−ν e
−iωνt. B̃ν(t) is the

kicking term of the Langevin equation. The associated correlation or diffusion matrix for

Gaussian Markov process can be given by a Hermition matrix with components

〈Biν(t)B
j
ν(t
′)〉 = Dijν δ(t− t

′) (5)

where i (j) runs for states ’+’ or ’-’.

Let us now concentrate on the situation of instability. For infinite system one can find a

range of ν , for which all the modes are unstable, the associated the frequencies ων(= −iΩν)

are purely an imaginary numbers and beyond that range all modes are stable. Therefore, in

course of time the fate of the system is dictated by the evolution of few such most unstable

modes. The probabilistic evolution of Aµ (see eq.(4)) can be described as well in terms of

Fokker-Planck equation. The evolution equations for first and second moment related to it

can be written as [9]

dAµ

dt
=

Ων 0

0 −Ων

 〈Aµ〉(t) (6)

dσijν (t)i

dt
= Ωil

νσ
lj
ν (t) + Ωjm

ν σmiν (t) + 2Dijν (7)

where σijν is a symmetric matrix. The initial condition i.e at t= 0, dσν/dt = 0 (σν =
∑
i>j σ

ij
ν )

satisfies if D++
ν = D−−ν = −D+−

ν . These equations are the same as those derived in Ref [8],

the solutions of which provide a good fit to the simulation result [10].

Within the framework of Langevin or FP equation, further study can be directed to

the non-linear regime of the dynamics by introducing non-linearity in the drift term. Since

−dUν/dAν correspond the drift coefficient of FP equation this can be done by adding a
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quartic term to the associated quadratic potential. This stochastic model of non-linear

Langevin equation, is rich in physics capable of explaining the general behaviour of the

system in the presence of instability far from the equilibrium and onset of macroscopic

structure [11]. The presence of the quartic term prevents an indefinite fall of a system and

drive it towards any one of the two newly appeared stable fixed points which correspond

to the minima of the dynamically generated cusps. The co-operative behaviour or the

synergism of nonlinearity and random force simulate this typical feature i.e. slowing down

the fluctuation near dynamical phase transition. The fluctuation deviate gradually from

its initial Gaussian profile as the system approaches to the second or scaling regime. The

modified equation for second moment with positive value of Ω is given by

d

dt
σ++
ν (t) = 2{Ων − gνσ

++
ν (t)}σ++

ν + 2D++
ν (8)

which provides a scaling solution

σ++
ν (t) =

Ων

gν

τ

1 + τ
; τ =

gν
Ων

(σ++
ν (0) +

D++
ν

Ων

)e2Ωνt (9)

with gν > 0. However, in the derivation of Eq. (8) a physical approximation i.e. A++3
ν (t) =

σ++
ν (t)A++

ν (t) is made [11]. The time needed to reach the saturation for a unstable mode ν

is given by

t0ν =
1

2Ων

log[
gν

Ων

{σ++
ν (0) +

D++
ν

Ων

}]−1 (10)

In Fig. 1. the open diamonds represents the time evolution of σk for unstable modes

with values of kx ranging from 0.3 to 0.6 with ky = 0. For direct comparison to earlier

results [3] we plot the function L2σk (see Fig. 1.) so that the unit becomes fm−2. The

solution of Eqs. (7) (valid for linear regime of the dynamics) are shown by dotted curves.

The solid curves represent the solution of non-linear generalization so that the evolution of

++ component is given by Eq. (9). For these solutions we use the initial condition i.e. at

t = 0, 〈A〉ν = σν = dσν/dt = 0. The general agreement of our fit to the simulation result

is quite good. The saturation time t0k for different modes are shown in the figure. The
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most unstable mode i.e. the mode having minimum growth constant tk (= Ω−1
k ) saturate

earliest and the time t0k gradualy increses as the tk increases. For some cases, the linear

regime of the dynamics persists even at time t = 120 fm/c. Let us consider the evolution

of density ρ(x, y; t) in co-ordinate space. In earlier time up to ≈ 75fm/c when spatial

average of
√
〈(δρ)2〉/〈ρ〉 reaches the value 1 we observe a considerable fluctuation in ρ in

the individual samples. However, the sample average density i.e. 〈ρ(x, y; t)〉 is found to

be almost uniform with ∼ 3% fluctuation from its initial value of 0.5 which is essentially

the mean (or single) trajectory result valid in the linear regime of the dynamics. As the

time increases the non-linear effect makes the situation different. We see structure even in

the sample average distribution of density which develops slowly in a coherent manner. In

Fig. 2 we plot 〈ρ(x, y; t)〉 at a time t = 150fm/c. This observed structure almost remains

steady with increasing time, which corresponds to a equilibrium or at least a metastable

state. The fluctuation is seen to be ∼ 20% with respect to the initial uniform state. The

appearance of such spatial inhomogeneity in the average density is in conformation with

that of a mean trajectory calculation reported in Ref. [12]. Though, the fluctuation in latter

case is larger than what we observe here. This may be attributed to the different initial and

also boundary conditions used in these two cases. However, large scale fluctuation exists in

individual samples, as evident from the attainment of a non-zero steady value of σk in the

present formalism.

In conclusion, using a recently proposed simulation scheme for inclusion of fluctuation

in BUU dynamics we study the problem of spinodal decomposition in nuclear matter. Our

work is mainly devoted to the study of the large time behaviour of system. To analyize

the simulation result we apply the well known Suzuki’s model of dynamical phase transition

successfully in the context of spinodal decomposition. Accordingly, the evolution of the

system is guided by the co-operative effect of non-linearity and fluctuation in a universal

manner. To make our stand clear, we would like to mention a recent work done by Baldo et

al. [13] where the evolution of fluctuation is studied in the framework of Vlasov equation. In
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the simulation work they studied the growth of an initial disturbance imposed on the uniform

nuclear matter. Without being saturated, the σk overshoots very fast from its linear trends

(in log scale). It will be relevant here to note that the finite collision rate, no matter how

small it be, changes the nature of the solutions describing a diffusive process as modeled

by the Langevin equation. Therefore, the non-diffusive behaviour of fluctuation, although

exhibits some non-standard evolution pattern, but does not indicate conclusively that the

dynamics of fragmentation is dominantly non-linear. However, similar such studies facilitate

us to extract the growth constant tk, (the RPA frequency) of the initial state [10] and also

allow a further scope to check the consistency of our work. The values of tk indicated in

Fig. 1. provide a good fit to the dispersion relation shown in Fig 3. of Ref. [10].
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Figure Captions

Fig.1 The fluctuation coefficient L2σk versus time t for different values of unstable mode k

(kx, ky) are shown. The open diamonds correspond to simulation results in steps of

10 fm/c. The dashed curves represent the solution of Eq.(7) while solid curves show

the nonlinear generalization of the same. The open circles represent the simulation

result of a typical stable mode with (kx = 0.8 fm−1, ky = 0) which exhibits an early

saturation.

Fig.2 The sample average density profile < ρ(x, y; t) > at time t= 150 fm/c versus the

position (x, y) is shown.
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