14,733 research outputs found

    Mathematical model investigation of long-term transport of ocean-dumped sewage sludge related to remote sensing

    Get PDF
    An existing, three-dimensional, Eulerian-Lagrangian finite-difference model was modified and used to examine the transport processes of dumped sewage sludge in the New York Bight. Both in situ and laboratory data were utilized in an attempt to approximate model inputs such as mean current speed, horizontal diffusion coefficients, particle size distributions, and specific gravities. The results presented are a quantitative description of the fate of a negatively buoyant sewage sludge plume resulting from continuous and instantaneous barge releases. Concentrations of the sludge near the surface were compared qualitatively with those remotely sensed. Laboratory study was performed to investigate the behavior of sewage sludge dumping in various ambient density conditions

    Attentive Neural Architecture Incorporating Song Features For Music Recommendation

    Full text link
    Recommender Systems are an integral part of music sharing platforms. Often the aim of these systems is to increase the time, the user spends on the platform and hence having a high commercial value. The systems which aim at increasing the average time a user spends on the platform often need to recommend songs which the user might want to listen to next at each point in time. This is different from recommendation systems which try to predict the item which might be of interest to the user at some point in the user lifetime but not necessarily in the very near future. Prediction of the next song the user might like requires some kind of modeling of the user interests at the given point of time. Attentive neural networks have been exploiting the sequence in which the items were selected by the user to model the implicit short-term interests of the user for the task of next item prediction, however we feel that the features of the songs occurring in the sequence could also convey some important information about the short-term user interest which only the items cannot. In this direction, we propose a novel attentive neural architecture which in addition to the sequence of items selected by the user, uses the features of these items to better learn the user short-term preferences and recommend the next song to the user.Comment: Accepted as a paper at the 12th ACM Conference on Recommender Systems (RecSys 18

    Temperature evolution of magnetic structure of HoFeO3_3 by single crystal neutron diffraction

    Get PDF
    We have investigated the temperature evolution of the magnetic structures of HoFeO3_3 by single crystal neutron diffraction. The three different magnetic structures found as a function of temperature for \hfo\ are described by the magnetic groups Pb'n21'2_1, Pbn212_1 and Pbn21'2_1' and are stable in the temperature ranges \approx 600-55~K, 55-37~K and 35>T>2>T>2~K respectively. In all three the fundamental coupling between the Fe sub-lattices remains the same and only their orientation and the degree of canting away from the ideal axial direction varies. The magnetic polarisation of the Ho sub-lattices in these two higher temperature regions, in which the major components of the Fe moment lie along xx and yy, is very small. The canting of the moments from the axial directions is attributed to the antisymmetric interactions allowed by the crystal symmetry. They include contributions from single ion anisotropy as well as the Dzyaloshinski antisymmetric exchange. In the low temperature phase two further structural transitions are apparent in which the spontaneous magnetisation changes sign with respect to the underlying antiferromagnetic configuration. In this temperature range the antisymmetric exchange energy varies rapidly as the the Ho sub-lattices begin to order. So long as the ordered Ho moments are small the antisymmetric exchange is due only to Fe-Fe interactions, but as the degree of Ho order increases the Fe-Ho interactions take over whilst at the lowest temperatures, when the Ho moments approach saturation the Ho-Ho interactions dominate. The reversals of the spontaneous magnetisation found in this study suggest that in \hfo\ the sums of the Fe-Fe and Ho-Ho antisymmetric interactions have the same sign as one another, but that of the Ho-Fe terms is opposite

    Analysis of GPS radio occultation data from the FORMOSAT-3/COSMIC and Metop/GRAS missions at CDAAC

    Get PDF
    This study investigates the noise level and mission-to-mission stability of Global Positioning System (GPS) radio occultation (RO) neutral atmospheric bending angle data at the UCAR COSMIC Data Analysis and Archive Center (CDAAC). Data are used from two independently developed RO instruments currently flying in orbit on the FORMOSAT-3/COSMIC (F3C) and Metop/GRAS (GNSS Receiver for Atmospheric Sounding) missions. The F3C 50 Hz RO data are post-processed with a single-difference excess atmospheric phase algorithm, and the Metop/GRAS 50 Hz closed loop and raw sampling (down-sampled from 1000 Hz to 50 Hz) data are processed with a zero-difference algorithm. The standard deviations of the F3C and Metop/GRAS bending angles from climatology between 60 and 80 km altitude from June–December 2009 are approximately 1.78 and 1.13 μrad, respectively. The F3C standard deviation reduces significantly to 1.44 μrad when single-difference processing uses GPS satellites on the same side of the spacecraft. The higher noise level for F3C bending angles can be explained by additional noise from the reference link phase data that are required with single-difference processing. The F3C and Metop/GRAS mean bending angles differences relative to climatology during the same six month period are statistically significant and have values of −0.05 and −0.02 μrad, respectively. A comparison of ~13 500 collocated F3C and Metop/GRAS bending angle profiles over this six month period shows a similar mean difference of ~0.02 ± 0.02 μrad between 30 and 60 km impact heights that is marginally significant. The observed mean difference between the F3C and Metop/GRAS bending angles of ~0.02–0.03 μrad is quite small and illustrates the high degree of re-produceability and mission independence of the GPS RO data at high altitudes. Collocated bending angles between two F3C satellites from early in the mission differ on average by up to 0.5% near the surface due to systematically lower signal-to-noise ratio for one of the satellites. Results from F3C and Metop/GRAS differences in the lower troposphere suggest the Metop/GRAS bending angles are negatively biased compared to F3C with a maximum of several percents near the surface in tropical regions. This bias is related to different tracking depths (deeper in F3C) and data gaps in Metop/GRAS which make it impossible to process the data from both missions in exactly the same way

    Suppression of core polarization in halo nuclei

    Get PDF
    We present a microscopic study of halo nuclei, starting from the Paris and Bonn potentials and employing a two-frequency shell model approach. It is found that the core-polarization effect is dramatically suppressed in such nuclei. Consequently the effective interaction for halo nucleons is almost entirely given by the bare G-matrix alone, which presently can be evaluated with a high degree of accuracy. The experimental pairing energies between the two halo neutrons in 6^6He and 11^{11}Li nuclei are satisfactorily reproduced by our calculation. It is suggested that the fundamental nucleon-nucleon interaction can be probed in a clearer and more direct way in halo nuclei than in ordinary nuclei.Comment: 11 pages, RevTex, 2 postscript figures; major revisions, matches version to appear in Phys. Rev. Letter

    Mass Hierarchies and the Seesaw Neutrino Mixing

    Get PDF
    We give a general analysis of neutrino mixing in the seesaw mechanism with three flavors. Assuming that the Dirac and u-quark mass matrices are similar, we establish simple relations between the neutrino parameters and individual Majorana masses. They are shown to depend rather strongly on the physical neutrino mixing angles. We calculate explicitly the implied Majorana mass hierarchies for parameter sets corresponding to different solutions to the solar neutrino problem.Comment: 11 pages, no figures, replaced with final version. Minor corrections and one typo corrected. Added one referenc
    corecore