83 research outputs found

    α/β–T Cell Receptor (TCR)+CD4−CD8− (NKT) Thymocytes Prevent Insulin-dependent Diabetes Mellitus in Nonobese Diabetic (NOD)/Lt Mice by the Influence of Interleukin (IL)-4 and/or IL-10

    Get PDF
    We have previously shown that nonobese diabetic (NOD) mice are selectively deficient in α/β-T cell receptor (TCR)+CD4−CD8− NKT cells, a defect that may contribute to their susceptibility to the spontaneous development of insulin-dependent diabetes mellitus (IDDM). The role of NKT cells in protection from IDDM in NOD mice was studied by the infusion of thymocyte subsets into young female NOD mice. A single intravenous injection of 106 CD4−/lowCD8− or CD4−CD8− thymocytes from female (BALB/c × NOD)F1 donors protected intact NOD mice from the spontaneous onset of clinical IDDM. Insulitis was still present in some recipient mice, although the cell infiltrates were principally periductal and periislet, rather than the intraislet pattern characteristic of insulitis in unmanipulated NOD mice. Protection was not associated with the induction of “allogenic tolerance” or systemic autoimmunity. Accelerated IDDM occurs after injection of splenocytes from NOD donors into irradiated adult NOD recipients. When α/β-TCR+ and α/β-TCR− subsets of CD4−CD8− thymocytes were transferred with diabetogenic splenocytes and compared for their ability to prevent the development of IDDM in irradiated adult recipients, only the α/β-TCR+ population was protective, confirming that NKT cells were responsible for this activity. The protective effect in the induced model of IDDM was neutralized by anti–IL-4 and anti–IL-10 monoclonal antibodies in vivo, indicating a role for at least one of these cytokines in NKT cell-mediated protection. These results have significant implications for the pathogenesis and potential prevention of IDDM in humans

    Histone deacetylase inhibitor suppresses virus-induced proinflammatory responses and type 1 diabetes

    No full text
    Microbial infections are hypothesized to play a key role in the mechanism leading to type 1 diabetes (T1D). We used the LEW1.WR1 rat model of Kilham rat virus (KRV)-induced islet destruction to better understand how virus infection triggers T1D. Inoculation of the LEW1.WR1 rat with KRV results in systemic inflammation followed by insulitis and islet destruction 2-4 weeks post-infection. In this study, we evaluated the effect of treatment with the anti-inflammatory histone deacetylase inhibitor (HDACi) ITF-2357 on KRV-induced immunity and disease progression. Administering LEW1.WR1 rats with KRV plus ITF-2357 on 14 consecutive days beginning on the day of infection protected animals from islet infiltration and T1D. ITF-2357 reversed KRV-induced T and B cell accumulation in the spleen or pancreatic lymph nodes on day 5 following infection. Moreover, ITF-2357 reduced the expression level of KRV-induced p40 subunit of IL-12/IL-23 in spleen cells in vitro and in the peripheral blood in vivo. ITF-2357 suppressed the KRV-induced expression of transcripts for IRF-7 in the rat INS-1 beta cell line. ITF-2357 increased the virus-induced IL-6 gene expression in the spleen, but did not alter the ability of LEW1.WR1 rats to develop normal KRV-specific humoral and cellular immune responses and clear the virus from the pancreatic lymph nodes, spleen, and serum. Finally, ITF-2357 reversed virus-induced modulation of bacterial communities in the intestine early following infection. The data suggest that targeting innate immune pathways with inhibitors of HDAC might represent an efficient therapeutic strategy for preventing T1D. KEY MESSAGE: Microbial infections have been implicated in triggering type 1 diabetes in humans and animal models. The LEW1.WR1 rat develops inflammation and T1D following infection with Kilham rat virus. The histone deacetylase inhibitor ITF-2357 suppresses virus-induced inflammation and prevents diabetes. ITF-2357 prevents T1D without altering virus-specific adaptive immunity or virus clearance. ITF-2357 therapy may be an efficient approach to prevent T1D in genetically susceptible individuals

    Exposure to the 2014 Gaza war and support for militancy: the role of emotion dysregulation

    No full text
    How do wars shape emotions and attitudes in intractable conflicts? In two studies conducted in the aftermath of the 2014 Gaza War in the Middle East, we tested a new theoretical model wherein the ability to regulate emotions is central in determining the influence of war exposure on emotions (i.e., group-based humiliation) and support for militancy, through posttraumatic stress symptoms (PSS). Results supported our model: (a) higher exposure to the war predicted group-based humiliation in both studies and in Study 2 also greater support for militancy; in both studies, (b) higher exposure predicted more PSS only among participants high in emotion dysregulation, and, for them, (c) higher exposure predicted greater group-based humiliation, through increased levels of PSS. Results from Study 2 suggest that (d) group-based humiliation will ultimately lead to greater support for militancy. The findings’ contribution to the different literatures and their integration is discussed.Social decision makin

    Horizons unlimited

    No full text
    CONTEXT: Recent studies have implicated proinflammatory responses in the mechanism of type 1 diabetes (T1D). OBJECTIVE: Our objective was to evaluate the safety and effects of therapy with the anti-inflammatory serum protein alpha1-antitrypsin (AAT) on islet function and innate immunity in recent-onset patients. DESIGN AND SETTING: This was an open-label phase I trial at the Barbara Davis Center for Childhood Diabetes, University of Colorado Denver. PATIENTS: Twelve recently diagnosed subjects with T1D with detectable C-peptides were included in the study. INTERVENTION: Eight consecutive weekly infusions of 80 mg/kg of AAT were given. MAIN OUTCOME MEASURES: PATIENTS were monitored for adverse effects of AAT therapy, C-peptide responses to a mixed-meal tolerance test, and toll-like receptor (TLR)-induced cellular IL-1beta in monocytes and myeloid dendritic cells (mDCs). RESULTS: No adverse effects were detected. AAT led to increased, unchanged, or moderately reduced levels of C-peptide responses compared with baseline in 5 patients. The total content of TLR4-induced cellular IL-1beta in monocytes at 12 months after AAT therapy was 3-fold reduced compared with baseline (P < .05). Furthermore, at baseline, 82% of monocytes produced IL-1beta, but at 12 months after therapy, the level decreased to 42%. Similar reductions were observed using TLR7/8 and TLR3 agonists in monocytes and mDCs. Unexpectedly, the reduction in cellular IL-1beta was observed only 9 and 12 months after treatment but not in untreated diabetics. Improved beta-cell function in the 5 AAT-treated individuals correlated with lower frequencies of monocytes and mDCs producing IL-1beta compared with subjects without improvement of islet function (P < .04 and P < .02, respectively). CONCLUSIONS: We hypothesize that AAT may have a beneficial effect on T1D in recently diagnosed patients that is associated with downmodulation of IL-1beta

    Infections that induce autoimmune diabetes in BBDR rats modulate CD4(+)CD25(+) T cell populations

    No full text
    Viruses are believed to contribute to the pathogenesis of autoimmune type 1A diabetes in humans. This pathogenic process can be modeled in the BBDR rat, which develops pancreatic insulitis and type 1A-like diabetes after infection with Kilham's rat virus (RV). The mechanism is unknown, but does not involve infection of the pancreatic islets. We first documented that RV infection of BBDR rats induces diabetes, whereas infection with its close homologue H-1 does not. Both viruses induced similar Immoral and cellular immune responses,in the host, but only RV also caused a decrease in splenic CD4(+)CD25(+) T cells in both BBDR rats and normal WF rats. Surprisingly, RV infection increased CD4(+)CD25(+) T cells in pancreatic lymph nodes of BBDR but not WF rats. This increase appeared to be due to the accumulation of nonproliferating CD4(+)CD25(+) T cells. The results imply that the reduction in splenic CD4(+)CD25(+) cells observed in RV-infected animals is virus specific, whereas the increase in pancreatic lymph node CD4(+)CD25(+) cells is both virus and rat strain specific. The data suggest that RV but not H-1 infection alters T cell regulation in BBDR rats and permits the expression of autoimmune diabetes. More generally, the results suggest a mechanism that could link an underlying genetic predisposition to environmental perturbation and transform a "regulated predisposition" into autoimmune diabetes, namely, failure to maintain regulatory CD4(+)CD25(+) T cell function
    • …
    corecore