56 research outputs found

    DOORS syndrome and a recurrent truncating ATP6V1B2 variant

    Get PDF
    PURPOSE: Biallelic variants in TBC1D24, which encodes a protein that regulates vesicular transport, are frequently identified in patients with DOORS (deafness, onychodystrophy, osteodystrophy, intellectual disability [previously referred to as mental retardation], and seizures) syndrome. The aim of the study was to identify a genetic cause in families with DOORS syndrome and without a TBC1D24 variant. METHODS: Exome or Sanger sequencing was performed in individuals with a clinical diagnosis of DOORS syndrome without TBC1D24 variants. RESULTS: We identified the same truncating variant in ATP6V1B2 (NM_001693.4:c.1516C>T; p.Arg506*) in nine individuals from eight unrelated families with DOORS syndrome. This variant was already reported in individuals with dominant deafness onychodystrophy (DDOD) syndrome. Deafness was present in all individuals, along with onychodystrophy and abnormal fingers and/or toes. All families but one had developmental delay or intellectual disability and five individuals had epilepsy. We also describe two additional families with DDOD syndrome in whom the same variant was found. CONCLUSION: We expand the phenotype associated with ATP6V1B2 and propose another causal gene for DOORS syndrome. This finding suggests that DDOD and DOORS syndromes might lie on a spectrum of clinically and molecularly related conditions

    Targeting Huntington’s disease through histone deacetylases

    Get PDF
    Huntington’s disease (HD) is a debilitating neurodegenerative condition with significant burdens on both patient and healthcare costs. Despite extensive research, treatment options for patients with this condition remain limited. Aberrant post-translational modification (PTM) of proteins is emerging as an important element in the pathogenesis of HD. These PTMs include acetylation, phosphorylation, methylation, sumoylation and ubiquitination. Several families of proteins are involved with the regulation of these PTMs. In this review, I discuss the current evidence linking aberrant PTMs and/or aberrant regulation of the cellular machinery regulating these PTMs to HD pathogenesis. Finally, I discuss the evidence suggesting that pharmacologically targeting one of these protein families the histone deacetylases may be of potential therapeutic benefit in the treatment of HD

    Susceptibility of North-American and European crickets to Acheta domesticus densovirus (AdDNV) and associated epizootics.

    No full text
    International audienceThe European house cricket, Acheta domesticus L., is highly susceptible to A. domesticus densovirus (AdDNV). Commercial rearings of crickets in Europe are frequently decimated by this pathogen. Mortality was predominant in the last larval stage and young adults. Infected A. domesticus were smaller, less active, did not jump as high, and the adult females seldom lived more than 10-14 days. The most obvious pathological change was the completely empty digestive caecae. Infected tissues included adipose tissue, midgut, epidermis, and Malpighian tubules. Sudden AdDNV epizootics have decimated commercial mass rearings in widely separated parts of North America since the autumn of 2009. Facilities that are producing disease-free crickets have avoided the importation of crickets and other non-cricket species (or nonliving material). Five isolates from different areas in North America contained identical sequences as did AdDNV present in non-cricket species collected from these facilities. The North American AdDNVs differed slightly from sequences of European AdDNV isolates obtained in 1977, 2004, 2006, 2007 and 2009 and an American isolate from 1988. The substitution rate of the 1977 AdDNV 5kb genome was about two nucleotides per year, about half of the substitutions being synonymous. The American and European AdDNV strains are estimated to have diverged in 2006. The lepidopterans Spodoptera littoralis and Galleria mellonella could not be infected with AdDNV. The Jamaican cricket, Gryllus assimilis, and the European field cricket, Gryllus bimaculatus, were also found to be resistant to AdDNV

    Supplementary Material for: Neuropathology of Partial PGC-1α Deficiency Recapitulates Features of Mitochondrial Encephalopathies but Not of Neurodegenerative Diseases

    No full text
    <b><i>Background:</i></b> Deficient peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) function is one component of mitochondrial dysfunction in neurodegenerative diseases. Current molecular classification of such diseases is based on the predominant protein accumulating as intra- or extracellular aggregates. Experimental evidence suggests that mitochondrial dysfunction and impaired protein processing are closely interrelated. In vitro findings further indicate that PGC-1α dysfunction may contribute to protein misfolding in neurodegeneration. <b><i>Objective:</i></b> To systematically evaluate the neuropathological alterations of mice lacking the expression of the full-length PGC-1α protein (FL-PGC-1α) but expressing an N-truncated fragment. <b><i>Methods:</i></b> To assess the pattern of neurodegeneration-related proteins, we performed immunostaining for Tau, pTau, α-synuclein, amyloid-β, amyloid precursor protein, prion protein, FUS, TDP-43 and ubiquitin. Using hematoxylin and eosin, Klüver-Barrera and Bielschowsky silver stainings and anti-GFAP immunohistochemistry, we performed an anatomical mapping to provide a lesion profile. <b><i>Results:</i></b> The immunohistochemical pattern of neurodegeneration-related proteins did not differ between FL-PGC-1α knockout and wild-type animals, and there was a complete lack of protein deposits or ubiquitin-positive inclusions. The analysis of neuropathological alterations revealed widespread vacuolation predominating in the cerebral white matter, caudate-putamen, thalamus and brainstem, and reactive astrogliosis in the brainstem and cerebellar nuclei. This morphological phenotype was thus reminiscent of human mitochondrial encephalopathies, especially the Kearns-Sayre syndrome. <b><i>Conclusion:</i></b> We conclude that the lack of FL-PGC-1α per se is insufficient to recapitulate major features of neurodegenerative diseases, but evokes a pathology seen in mitochondrial encephalopathies, which makes PGC-1α-deficient mice a valuable model for this yet incurable group of diseases

    Gray Matter Is Targeted in First-Attack Multiple Sclerosis

    Get PDF
    The cause of multiple sclerosis (MS), its driving pathogenesis at the earliest stages, and what factors allow the first clinical attack to manifest remain unknown. Some imaging studies suggest gray rather than white matter may be involved early, and some postulate this may be predictive of developing MS. Other imaging studies are in conflict. To determine if there was objective molecular evidence of gray matter involvement in early MS we used high-resolution mass spectrometry to identify proteins in the cerebrospinal fluid (CSF) of first-attack MS patients (two independent groups) compared to established relapsing remitting (RR) MS and controls. We found that the CSF proteins in first-attack patients were differentially enriched for gray matter components (axon, neuron, synapse). Myelin components did not distinguish these groups. The results support that gray matter dysfunction is involved early in MS, and also may be integral for the initial clinical presentation
    corecore