4,503 research outputs found
Generation of Porous Particle Structures using the Void Expansion Method
The newly developed "void expansion method" allows for an efficient
generation of porous packings of spherical particles over a wide range of
volume fractions using the discrete element method. Particles are randomly
placed under addition of much smaller "void-particles". Then, the void-particle
radius is increased repeatedly, thereby rearranging the structural particles
until formation of a dense particle packing.
The structural particles' mean coordination number was used to characterize
the evolving microstructures. At some void radius, a transition from an
initially low to a higher mean coordination number is found, which was used to
characterize the influence of the various simulation parameters. For structural
and void-particle stiffnesses of the same order of magnitude, the transition is
found at constant total volume fraction slightly below the random close packing
limit. For decreasing void-particle stiffness the transition is shifted towards
a smaller void-particle radius and becomes smoother.Comment: 9 pages, 8 figure
In vivo models of lung neutrophil activation. Comparison of mice and hamsters
BACKGROUND: Evidence suggests that both the migration and activation of neutrophils into the airway is of importance in pathological conditions such as pulmonary emphysema. In the present study, we describe in vivo models of lung neutrophil infiltration and activation in mice and hamsters. RESULTS: BALB/c and C57BL/6 mice were intranasally treated with lipopolysaccharide (0.3 mg/kg). Twenty-four hours after, animals were treated intranasally with N-Formyl-Met-Leu-Phe (0 to 5 mg/kg). Golden Syrian hamsters were treated intratracheally with 0.5 mg/kg of lipopolysaccharide. Twenty-four hours after, animals were treated intratracheally with 0.25 mg/kg of N-Formyl-Met-Leu-Phe. Both mice and hamster were sacrificed two hours after the N-Formyl-Met-Leu-Phe application. In both BALB/c and C57BL/6 mice, a neutrophil infiltration was observed after the sequential application of lipopolysaccharide and N-Formyl-Met-Leu-Phe. However, 5 times less neutrophil was found in C57BL/6 mice when compared to BALB/c mice. This was reflected in the neutrophil activation parameters measured (myeloperoxidase and elastase activities). Despite the presence of neutrophil and their activation status, no lung haemorrhage could be detected in both strains of mice. When compared with mice, the lung inflammation induced by the sequential application of lipopolysaccharide and N-Formyl-Met-Leu-Phe was much greater in the hamster. In parallel with this lung inflammation, a significant lung haemorrhage was also observed. CONCLUSIONS: Both mouse and hamster can be used for pharmacological studies of new drugs or other therapeutics agents that aimed to interfere with neutrophil activation. However, only the hamster model seems to be suitable for studying the haemorrhagic lung injury proces
Nonlinear viscoelasticity of metastable complex fluids
Many metastable complex fluids such as colloidal glasses and gels show
distinct nonlinear viscoelasticity with increasing oscillatory-strain
amplitude; the storage modulus decreases monotonically as the strain amplitude
increases whereas the loss modulus has a distinct peak before it decreases at
larger strains. We present a qualitative argument to explain this ubiquitous
behavior and use mode coupling theory (MCT) to confirm it. We compare
theoretical predictions to the measured nonlinear viscoelasticity in a dense
hard sphere colloidal suspensions; reasonable agreement is obtained. The
argument given here can be used to obtain new information about linear
viscoelasticity of metastable complex fluids from nonlinear strain
measurements.Comment: 7 pages, 3 figures, accepted for publication in Europhys. Let
Observation of vortex-nucleated magnetization reversal in individual ferromagnetic nanotubes
The reversal of a uniform axial magnetization in a ferromagnetic nanotube
(FNT) has been predicted to nucleate and propagate through vortex domains
forming at the ends. In dynamic cantilever magnetometry measurements of
individual FNTs, we identify the entry of these vortices as a function of
applied magnetic field and show that they mark the nucleation of magnetization
reversal. We find that the entry field depends sensitively on the angle between
the end surface of the FNT and the applied field. Micromagnetic simulations
substantiate the experimental results and highlight the importance of the ends
in determining the reversal process. The control over end vortex formation
enabled by our findings is promising for the production of FNTs with tailored
reversal properties.Comment: 20 pages, 13 figure
Molecular structure of highly-excited resonant states in Mg and the corresponding Be+O and C+C decays
Exotic Be and C decays from high-lying resonances in Mg are
analyzed in terms of a cluster model. The calculated quantities agree well with
the corresponding experimental data. It is found that the calculated decay
widths are very sensitive to the angular momentum carried by the outgoing
cluster. It is shown that this property makes cluster decay a powerful tool to
determine the spin as well as the molecular structures of the resonances.Comment: 17 pages, no figur
IL-2-Mediated In Vivo Expansion of Regulatory T Cells Combined with CD154-CD40 Co-Stimulation Blockade but Not CTLA-4 Ig Prolongs Allograft Survival in Naive and Sensitized Mice.
In recent years, regulatory T cells (Treg)-based immunotherapy has emerged as a promising strategy to promote operational tolerance after solid organ transplantation (SOT). However, a main hurdle for the therapeutic use of Treg in transplantation is their low frequency, particularly in non-lymphopenic hosts. We aimed to expand Treg directly in vivo and determine their efficacy in promoting donor-specific tolerance, using a stringent experimental model. Administration of the IL-2/JES6-1 immune complex at the time of transplantation resulted in significant expansion of donor-specific Treg, which suppressed alloreactive T cells. IL-2-mediated Treg expansion in combination with short-term CD154-CD40 co-stimulation blockade, but not CTLA-4 Ig or rapamycin, led to tolerance to MHC-mismatched skin grafts in non-lymphopenic mice, mainly by hindering alloreactive CD8(+) effector T cells and the production of alloantibodies. Importantly, this treatment also allowed prolonged survival of allografts in the presence of either donor-specific or cross-reactive memory cells. However, late rejection occurred in sensitized hosts, partly mediated by activated B cells. Overall, these data illustrate the potential but also some important limitations of Treg-based therapy in clinical SOT as well as the importance of concomitant immunomodulatory strategies in particular in sensitized hosts
- …
