1,381 research outputs found
Effect of interface states on spin-dependent tunneling in Fe/MgO/Fe tunnel junctions
The electronic structure and spin-dependent tunneling in epitaxial
Fe/MgO/Fe(001) tunnel junctions are studied using first-principles
calculations. For small MgO barrier thickness the minority-spin resonant bands
at the two interfaces make a significant contribution to the tunneling
conductance for the antiparallel magnetization, whereas these bands are, in
practice, mismatched by disorder and/or small applied bias for the parallel
magnetization. This explains the experimentally observed decrease in tunneling
magnetoresistance (TMR) for thin MgO barriers. We predict that a monolayer of
Ag epitaxially deposited at the interface between Fe and MgO suppresses
tunneling through the interface band and may thus be used to enhance the TMR
for thin barriers.Comment: 4 pages, 3 eps figures (2 in color), revtex
Особенности строения сеноманской газоконденсатной залежи на Заполярном месторождении (ЯНАО)
By focusing fs-laser radiation in the volume of a transparent material the refractive index can be changed locally, leading to 3-dimensional waveguiding structures. Waveguides are written in phosphate glass (IOG from Schott) at a depth of 100 µm below the surface. The pulse energy and the scan velocity are varied. For the first time the optical path difference caused by the waveguides and therefore the refractive index distribution of the waveguides and their cross sections are determined using interference microscopy. The optical path difference measured in the written structures and their cross sections is analyzed by a phase-shift algorithm. Thus, the refractive index distribution both along a line perpendicular to the waveguide and in the plane of a cross section is determined. The results are visualized as 2-dimensional graphics. Several regions of opposite sign of the refractive index change are observed in the cross sections of waveguides generated by femtosecond laser pulses. The number and the size of these regions are increasing with increasing pulse energy and decreasing scan velocity
Использование корректного нормирования статистических данных в кластерном анализе
The fabrication of microchannels and self-assembled nanostructures in the volume of sapphire was performed by femtosecond laser irradiation followed by chemical etching with aqueous solution of HF acid. Depending on the focusing conditions self-organized nanostructures or elliptical microchannels are produced. While the dimensions in two directions are on a micro- respectively nanoscale, feature lengths of up to 1 mm are achieved. This comes out to aspect ratios of more than 1000. This fabrication technique is potentially usable for photonic crystal based integrated optical elements or microfluidic devices for applications in life science, biology or chemistry
Spin-polarized tunneling between an antiferromagnet and a ferromagnet: First-principles calculations and transport theory
By combining first-principles calculations with transport theory we investigate the origin of the magnetoresistance of a magnetic tunnel junction consisting of a ferromagnetic and an antiferromagnetic lead. The (001) oriented Fe/vacuum/Cr planar junction serves as model junction. Even though the conduction electrons of antiferromagnetic Cr are spin-degenerate, it is possible to observe magnetoresistance due to two mechanisms: Firstly, the surface magnetism of Cr creates a spin-dependent potential barrier, and secondly, exchange-split surface states and resonances result in a tunneling conductance which depends on the relative orientation of the Fe and Cr magnetizations. Spin-dependent tunneling between a ferromagnet and an antiferromagnet happens frequently in tunneling setups such as in spin-polarized scanning tunneling microscopy or magnetic tunnel junctions for magnetic random access memory
Density of Phonon States in Superconducting FeSe as a Function of Temperature and Pressure
The temperature and pressure dependence of the partial density of phonon
states of iron atoms in superconducting Fe1.01Se was studied by 57Fe nuclear
inelastic scattering (NIS). The high energy resolution allows for a detailed
observation of spectral properties. A sharpening of the optical phonon modes
and shift of all spectral features towards higher energies by ~4% with
decreasing temperature from 296 K to 10 K was found. However, no detectable
change at the tetragonal - orthorhombic phase transition around 100 K was
observed. Application of a pressure of 6.7 GPa, connected with an increase of
the superconducting temperature from 8 K to 34 K, results in an increase of the
optical phonon mode energies at 296 K by ~12%, and an even more pronounced
increase for the lowest-lying transversal acoustic mode. Despite these strong
pressure-induced modifications of the phonon-DOS we conclude that the
pronounced increase of Tc in Fe1.01Se with pressure cannot be described in the
framework of classical electron-phonon coupling. This result suggests the
importance of spin fluctuations to the observed superconductivity
Элитарная языковая личность: опыт моделирования (на материале русского эпистолярия ХХ?ХХ? вв.)
Исследование выполнено в рамках лингвоперсонологического и дискурсоориентированного подходов с опорой на последние достижения в области функциональной и коммуникативной стилистики, когнитивной лингвистики, лингвокультурологии, жанроведения и прагмалингвистики. В качестве эмпирической базы выступают частные письма представителей русской творческой интеллигенции - художника, оперного певца, композитора, патриарха, поэтов, публицистов, ученых, актеров, в большинстве своем не изученные в лингвистическом отношении. Работу отличает динамический аспект рассмотрения заявленной проблема-тики на протяжении значительного исторического периода - ХХ-ХХI вв. Сказанное определяет актуальность статьи. Цель исследования - создание инварианта языковой личности, принадлежащей элитарному типу речевой культуры. В связи с этим используются такие методы, как прием моделирования, коммуникативно-прагматический и сопоставительный анализ. В результате осуществленного исследования на основе определенных дискурсивных параметров создана модельная элитарная языковая личность, особенности коммуникативного поведения которой эксплицируются в конкретных ситуациях личностно ориентированного эпистолярного общения. В качестве вывода приводится перечень инвариантных свойств обозначенного типа языковой личности: рефлексивность сознания, особенно заметная в ситуациях осмысления роли творца в социуме, высокий уровень коммуникативной компетентности и риторического мастерства, открытость дискурсивных проявлений
Localized inhibition of protein phosphatase 1 by NUAK1 promotes spliceosome activity and reveals a MYC-sensitive feedback control of transcription.
Deregulated expression of MYC induces a dependence on the NUAK1 kinase, but the molecular mechanisms underlying this dependence have not been fully clarified. Here, we show that NUAK1 is a predominantly nuclear protein that associates with a network of nuclear protein phosphatase 1 (PP1) interactors and that PNUTS, a nuclear regulatory subunit of PP1, is phosphorylated by NUAK1. Both NUAK1 and PNUTS associate with the splicing machinery. Inhibition of NUAK1 abolishes chromatin association of PNUTS, reduces spliceosome activity, and suppresses nascent RNA synthesis. Activation of MYC does not bypass the requirement for NUAK1 for spliceosome activity but significantly attenuates transcription inhibition. Consequently, NUAK1 inhibition in MYC-transformed cells induces global accumulation of RNAPII both at the pause site and at the first exon-intron boundary but does not increase mRNA synthesis. We suggest that NUAK1 inhibition in the presence of deregulated MYC traps non-productive RNAPII because of the absence of correctly assembled spliceosomes
Ce-L3-XAS study of the temperature dependence of the 4f occupancy in the Kondo system Ce2Rh3Al9
We have used temperature dependent x-ray absorption at the Ce-L3 edge to
investigate the recently discovered Kondo compound Ce2Rh3Al9. The systematic
changes of the spectral lineshape with decreasing temperature are analyzed and
found to be related to a change in the occupation number, n_f, as the
system undergoes a transition into a Kondo state. The temperature dependence of
indicates a characteristic temperature of 150K, which is clearly related
with the high temperature anomaly observed in the magnetic susceptibility of
the same system. The further anomaly observed in the resistivity of this system
at low temperature (ca. 20K) has no effect on n_f and is thus not of Kondo
origin.Comment: 7 pages, three figures, submitted to PR
The nonlinear time-dependent response of isotactic polypropylene
Tensile creep tests, tensile relaxation tests and a tensile test with a
constant rate of strain are performed on injection-molded isotactic
polypropylene at room temperature in the vicinity of the yield point. A
constitutive model is derived for the time-dependent behavior of
semi-crystalline polymers. A polymer is treated as an equivalent network of
chains bridged by permanent junctions. The network is modelled as an ensemble
of passive meso-regions (with affine nodes) and active meso-domains (where
junctions slip with respect to their positions in the bulk medium with various
rates). The distribution of activation energies for sliding in active
meso-regions is described by a random energy model. Adjustable parameters in
the stress--strain relations are found by fitting experimental data. It is
demonstrated that the concentration of active meso-domains monotonically grows
with strain, whereas the average potential energy for sliding of junctions and
the standard deviation of activation energies suffer substantial drops at the
yield point. With reference to the concept of dual population of crystalline
lamellae, these changes in material parameters are attributed to transition
from breakage of subsidiary (thin) lamellae in the sub-yield region to
fragmentation of primary (thick) lamellae in the post-yield region of
deformation.Comment: 29 pages, 12 figure
Laser-controlled fluorescence in two-level systems
The ability to modify the character of fluorescent emission by a laser-controlled, optically nonlinear process has recently been shown theoretically feasible, and several possible applications have already been identified. In operation, a pulse of off-resonant probe laser beam, of sufficient intensity, is applied to a system exhibiting fluorescence, during the interval of excited- state decay following the initial excitation. The result is a rate of decay that can be controllably modified, the associated changes in fluorescence behavior affording new, chemically specific information. In this paper, a two-level emission model is employed in the further analysis of this all-optical process; the results should prove especially relevant to the analysis and imaging of physical systems employing fluorescent markers, these ranging from quantum dots to green fluorescence protein. Expressions are presented for the laser-controlled fluorescence anisotropy exhibited by samples in which the fluorophores are randomly oriented. It is also shown that, in systems with suitably configured electronic levels and symmetry properties, fluorescence emission can be produced from energy levels that would normally decay nonradiatively. © 2010 American Chemical Society
- …
