4,261 research outputs found
Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene
We present Raman spectroscopy measurements on single- and few-layer graphene
flakes. Using a scanning confocal approach we collect spectral data with
spatial resolution, which allows us to directly compare Raman images with
scanning force micrographs. Single-layer graphene can be distinguished from
double- and few-layer by the width of the D' line: the single peak for
single-layer graphene splits into different peaks for the double-layer. These
findings are explained using the double-resonant Raman model based on ab-initio
calculations of the electronic structure and of the phonon dispersion. We
investigate the D line intensity and find no defects within the flake. A finite
D line response originating from the edges can be attributed either to defects
or to the breakdown of translational symmetry
A Methodology for Three-Dimensional Quantification of Anterior Tooth Width
The use of cone-beam computed tomography (CBCT) technology has been shown to be more accurate in measuring individual incisor tooth widths than the use of wax exemplars. There were fewer differences by investigators using CBCT than others using an F-test in a mixed model of the measurement differences of investigators, wax type, and which tooth was measured. In addition, the frequency of outliers was less in the CBCT method (a total of 5) as compared to the two-dimensional measurements in ether Aluwax (a total of 8) or Coprwax (a total of 12). Both results indicate that CBCT measurements accounted more precisely for tooth width and level of eruption
Raman imaging of doping domains in graphene on SiO2
We present spatially resolved Raman images of the G and 2D lines of
single-layer graphene flakes. The spatial fluctuations of G and 2D lines are
correlated and are thus shown to be affiliated with local doping domains. We
investigate the position of the 2D line -- the most significant Raman peak to
identify single-layer graphene -- as a function of charging up to |n|~4 10^12
cm^-2. Contrary to the G line which exhibits a strong and symmetric stiffening
with respect to electron and hole-doping, the 2D line shows a weak and slightly
asymmetric stiffening for low doping. Additionally, the line width of the 2D
line is, in contrast to the G line, doping-independent making this quantity a
reliable measure for identifying single-layer graphene
Crustaceans associated with Cnidaria, Bivalvia, Echinoidea and Pisces at São Tomé and Príncipe islands
Symbiotic crustaceans were searched for at sea anemones (Actiniaria), encrusting
anemones (Zoantharia), horny coral (Gorgonaria), black coral (Antipatharia), bivalves (Bivalvia), and sea urchins (Echinoidea) at São Tomé and Príncipe Islands (Gulf of Guinea, eastern central Atlantic). Sixteen species of crustaceans were found in association with these invertebrate hosts; eleven of them were new records for the area and two species,
belonging to the genera Hippolyte and Heteromysis, were new for science. The thalassinid Axiopsis serratifrons was occasionally associated with an undescribed species of gobiid fish
Greedy kernel methods for accelerating implicit integrators for parametric ODEs
We present a novel acceleration method for the solution of parametric ODEs by
single-step implicit solvers by means of greedy kernel-based surrogate models.
In an offline phase, a set of trajectories is precomputed with a high-accuracy
ODE solver for a selected set of parameter samples, and used to train a kernel
model which predicts the next point in the trajectory as a function of the last
one. This model is cheap to evaluate, and it is used in an online phase for new
parameter samples to provide a good initialization point for the nonlinear
solver of the implicit integrator. The accuracy of the surrogate reflects into
a reduction of the number of iterations until convergence of the solver, thus
providing an overall speedup of the full simulation. Interestingly, in addition
to providing an acceleration, the accuracy of the solution is maintained, since
the ODE solver is still used to guarantee the required precision. Although the
method can be applied to a large variety of solvers and different ODEs, we will
present in details its use with the Implicit Euler method for the solution of
the Burgers equation, which results to be a meaningful test case to demonstrate
the method's features
Quantification of the Individual Characteristics of the Human Dentition
The considerations for admissibility suggested by the Daubert trilogy challenge forensic experts to provide scientific support for opinion testimony. The defense bar has questioned the reliability of bitemark analysis. Under an award from the U. S. Department of Justice, via the Midwest Forensic Resource Center, a two-year feasibility study was undertaken to quantify six dental characteristics. Using two computer programs, the exemplars of 419 volunteers were digitally scanned, characteristics were measured, and frequency was calculated. The study demonstrates that there were outliers or rare dental characteristics in measurements. An analysis of the intra-observer and inter-observer consistency demonstrated a high degree of agreement. Expansion of the sample size through collaboration with other academic researchers will be necessary to be able to quantify the occurrence of these characteristics in the general population. The automated software application, Tom\u27s Toolbox, developed specifically for this research project, could also provide a template for precisely quantifying other pattern evidence
Groundwater microflora of the Aptian-Cenomanian deposits at the Igolsko-Talovoe field in Tomsk Region
The authors have studied the microbiological composition of the groundwater of the Aptian-Cenomanian deposits in the territory of the Igolsko-Talovoe field in Tomsk Region. The detected diversity of the physiological groups of bacteria can be a corrosive component for waters used in the reservoir pressure maintenance system. The research findings have allowed making conclusions about the need to study the contribution of all microorganisms inhabiting the waters of the Aptian-Cenomanian deposits to corrosion
Refractive error sensing from wavefront slopes
15 páginas, 8 figuras, 2 tablas.The problem of measuring the objective refractive error with an aberrometer has shown to be more elusive than expected.
Here, the formalism of differential geometry is applied to develop a theoretical framework of refractive error sensing. At each
point of the pupil, the local refractive error is given by the wavefront curvature, which is a 2   2 symmetric matrix, whose
elements are directly related to sphere, cylinder, and axis. Aberrometers usually measure the local gradient of the
wavefront. Then refractive error sensing consists of differentiating the gradient, instead of integrating as in wavefront
sensing. A statistical approach is proposed to pass from the local to the global (clinically meaningful) refractive error, in\ud
which the best correction is assumed to be the maximum likelihood estimation. In the practical implementation, this
corresponds to the mode of the joint histogram of the 3 different elements of the curvature matrix. Results obtained both in
computer simulations and with real data provide a close agreement and consistency with the main optical image quality
metrics such as the Strehl ratio.This research has been supported by the Spanish
CICyT, Grant FIS2008-00697, and Red Española de
Optometría (Ministerio de Ciencia e Innovación,
SAF2008-01114-E).Peer reviewe
Light response of pure CsI calorimeter crystals painted with wavelength-shifting lacquer
We have measured scintillation properties of pure CsI crystals used in the
shower calorimeter built for a precise determination of the pi+ -> pi0 e+ nu
decay rate at the Paul Scherrer Institute (PSI). All 240 individual crystals
painted with a special wavelength-shifting solution were examined in a
custom-build detection apparatus (RASTA=radioactive source tomography
apparatus) that uses a 137Cs radioactive gamma source, cosmic muons and a light
emitting diode as complementary probes of the scintillator light response. We
have extracted the total light output, axial light collection nonuniformities
and timing responses of the individual CsI crystals. These results predict
improved performance of the 3 pi sr PIBETA calorimeter due to the painted
lateral surfaces of 240 CsI crystals. The wavelength-shifting paint treatment
did not affect appreciably the total light output and timing resolution of our
crystal sample. The predicted energy resolution for positrons and photons in
the energy range of 10-100 MeV was nevertheless improved due to the more
favorable axial light collection probability variation. We have compared
simulated calorimeter ADC spectra due to 70 MeV positrons and photons with a
Monte Carlo calculation of an ideal detector light response.Comment: Elsevier LaTeX, 35 pages in e-print format, 15 Postscript Figures and
  4 Tables, also available at
  http://pibeta.phys.virginia.edu/~pibeta/subprojects/csipro/tomo/rasta.p
The Diffusion of Humans and Cultures in the Course of the Spread of Farming
The most profound change in the relationship between humans and their
environment was the introduction of agriculture and pastoralism. [....] For an
understanding of the expansion process, it appears appropriate to apply a
diffusive model. Broadly, these numerical modeling approaches can be catego-
rized in correlative, continuous and discrete. Common to all approaches is the
comparison to collections of radiocarbon data that show the apparent wave of
advance of the transition to farming. However, these data sets differ in entry
density and data quality. Often they disregard local and regional specifics and
research gaps, or dating uncertainties. Thus, most of these data bases may only
be used on a very general, broad scale. One of the pitfalls of using
irregularly spaced or irregularly documented radiocarbon data becomes evident
from the map generated by Fort (this volume, Chapter 16): while the general
east-west and south-north trends become evident, some areas appear as having
undergone anomalously early transitions to farming. This may be due to faulty
entries into the data base or regional problems with radiocarbon dating, if not
unnoticed or undocumented laboratory mistakes.Comment: 20 pages, 5 figures, submitted to Diffusive Spreading in Nature,
  Technology and Society, edited by Armin Bunde, J\"urgen Caro, J\"org
  K\"arger, Gero Vogl, Chapter 1
- …
