2,446 research outputs found

    Neutron-induced background in the CONUS experiment

    Full text link
    CONUS is a novel experiment aiming at detecting elastic neutrino nucleus scattering in the fully coherent regime using high-purity Germanium (Ge) detectors and a reactor as antineutrino (νˉ\bar\nu) source. The detector setup is installed at the commercial nuclear power plant in Brokdorf, Germany, at a very small distance to the reactor core in order to guarantee a high flux of more than 1013νˉ^{13}\bar\nu/(s\cdotcm2^2). For the experiment, a good understanding of neutron-induced background events is required, as the neutron recoil signals can mimic the predicted neutrino interactions. Especially neutron-induced events correlated with the thermal power generation are troublesome for CONUS. On-site measurements revealed the presence of a thermal power correlated, highly thermalized neutron field with a fluence rate of (745±\pm30)cm2^{-2}d1^{-1}. These neutrons that are produced by nuclear fission inside the reactor core, are reduced by a factor of \sim1020^{20} on their way to the CONUS shield. With a high-purity Ge detector without shield the γ\gamma-ray background was examined including highly thermal power correlated 16^{16}N decay products as well as γ\gamma-lines from neutron capture. Using the measured neutron spectrum as input, it was shown, with the help of Monte Carlo simulations, that the thermal power correlated field is successfully mitigated by the installed CONUS shield. The reactor-induced background contribution in the region of interest is exceeded by the expected signal by at least one order of magnitude assuming a realistic ionization quenching factor of 0.2.Comment: 28 pages, 28 figure

    Interferometric imaging of the sulfur-bearing molecules H2S, SO and CS in comet C/1995 O1 (Hale-Bopp)

    Full text link
    We present observations of rotational lines of H2S, SO and CS performed in comet C/1995 O1 (Hale-Bopp) in March 1997 with the Plateau de Bure interferometer (IRAM). The observations provide informations on the spatial and velocity distributions of these molecules. They can be used to constrain their photodissociation rate and their origin. We use a radiative transfer code which allows us to compute synthetic line profiles and interferometric maps, to be compared to the observations. Both single-dish spectra and interferometric spectral maps show a day/night asymmetry in the outgassing. From the analysis of the spectral maps, including the astrometry, we show that SO and CS present in addition a jet-like structure that may be the gaseous counterpart of the dust high-latitude jet observed in optical images. A CS rotating jet is also observed. Using the astrometry provided by continuum radio maps obtained in parallel, we conclude that there is no need to invoke of nongravitational forces acting on this comet, and provide an updated orbit. The radial extension of H2S is found to be consistent with direct release from the nucleus. SO displays an extended radial distribution. Assuming that SO2 is the parent of SO, the photodissociation rate of SO is measured to be 1.5 E-4 s-1 at 1 AU from the Sun. This is lower than most laboratory-based estimates and may suggest that SO is not solely produced by SO2 photolysis. From the observations of J(2-1) and J(5-4) CS lines, we deduce a CS photodissociation rate of 1 to 5 E-5 s-1. The photodissociation rate of CS2, the likely parent of CS, cannot be constrained due to insufficient resolution, but our data are consistent with published values. These observations illustrate the cometary science that will be performed with the future ALMA interferometer.Comment: Accepted for publication in Astronomy & Astrophysic

    Full-Polarization Observations of OH Masers in Massive Star-Forming Regions: I. Data

    Full text link
    We present full-polarization VLBA maps of the ground-state, main-line, 2 Pi 3/2, J = 3/2 OH masers in 18 Galactic massive star-forming regions. This is the first large polarization survey of interstellar hydroxyl masers at VLBI resolution. A total of 184 Zeeman pairs are identified, and the corresponding magnetic field strengths are indicated. We also present spectra of the NH3 emission or absorption in these star-forming regions. Analysis of these data will be presented in a companion paper.Comment: 111 pages, including 42 figures and 21 tables, to appear in ApJ

    A massive cluster of Red Supergiants at the base of the Scutum-Crux arm

    Full text link
    We report on the unprecedented Red Supergiant (RSG) population of a massive young cluster, located at the base of the Scutum-Crux Galactic arm. We identify candidate cluster RSGs based on {\it 2MASS} photometry and medium resolution spectroscopy. With follow-up high-resolution spectroscopy, we use CO-bandhead equivalent width and high-precision radial velocity measurements to identify a core grouping of 26 physically-associated RSGs -- the largest such cluster known to-date. Using the stars' velocity dispersion, and their inferred luminosities in conjuction with evolutionary models, we argue that the cluster has an initial mass of \sim40,000\msun, and is therefore among the most massive in the galaxy. Further, the cluster is only a few hundred parsecs away from the cluster of 14 RSGs recently reported by Figer et al (2006). These two RSG clusters represent 20% of all known RSGs in the Galaxy, and now offer the unique opportunity to study the pre-supernova evolution of massive stars, and the Blue- to Red-Supergiant ratio at uniform metallicity. We use GLIMPSE, MIPSGAL and MAGPIS survey data to identify several objects in the field of the larger cluster which seem to be indicative of recent region-wide starburst activity at the point where the Scutum-Crux arm intercepts the Galactic bulge. Future abundance studies of these clusters will therefore permit the study of the chemical evolution and metallicity gradient of the Galaxy in the region where the disk meets the bulge.Comment: 49 pages, 22 figures. Accepted for publication in ApJ. Version with hi-res figures can be found at http://www.cis.rit.edu/~bxdpci/RSGC2.pd

    Having Fun in Learning Formal Specifications

    Full text link
    There are many benefits in providing formal specifications for our software. However, teaching students to do this is not always easy as courses on formal methods are often experienced as dry by students. This paper presents a game called FormalZ that teachers can use to introduce some variation in their class. Students can have some fun in playing the game and, while doing so, also learn the basics of writing formal specifications in the form of pre- and post-conditions. Unlike existing software engineering themed education games such as Pex and Code Defenders, FormalZ takes the deep gamification approach where playing gets a more central role in order to generate more engagement. This short paper presents our work in progress: the first implementation of FormalZ along with the result of a preliminary users' evaluation. This implementation is functionally complete and tested, but the polishing of its user interface is still future work

    Radio Continuum and Recombination Line Study of UC HII Regions with Extended Envelopes

    Get PDF
    We have carried out 21 cm radio continuum observations of 16 UC HII regions using the VLA (D-array) in search of associated extended emission. We have also observed H76α_\alpha recombination line towards all the sources and He76α_\alpha line at the positions with strong H76α_\alpha line emission. The UC HII regions have simple morphologies and large (>10) ratios of single-dish to VLA fluxes. Extended emission was detected towards all the sources. The extended emission consists of one to several compact components and a diffuse extended envelope. All the UC HII regions but two are located in the compact components, where the UC HII regions always correspond to their peaks. The compact components with UC HII regions are usually smaller and denser than those without UC HII regions. Our recombination line observations indicate that the ultracompact, compact, and extended components are physically associated. The UC HII regions and their associated compact components are likely to be ionized by the same sources on the basis of the morphological relations mentioned above. This suggests that almost all of the observed UC HII regions are not `real' UC HII regions and that their actual ages are much greater than their dynamical age (<10000 yr). We find that most of simple UC HII regions previously known have large ratios of single-dish to VLA fluxes, similar to our sources. Therefore, the `age problem' of UC HII regions does not seem to be as serious as earlier studies argued. We present a simple model that explains extended emission around UC HII regions. Some individual sources are discussed.Comment: 29 pages, 28 postscript figures, Accepted for publication in Ap

    SOFIA/FORCAST and Spitzer/IRAC Imaging of the Ultra Compact H II Region W3(OH) and Associated Protostars in W3

    Full text link
    We present infrared observations of the ultra-compact H II region W3(OH) made by the FORCAST instrument aboard SOFIA and by Spitzer/IRAC. We contribute new wavelength data to the spectral energy distribution, which constrains the optical depth, grain size distribution, and temperature gradient of the dusty shell surrounding the H II region. We model the dust component as a spherical shell containing an inner cavity with radius ~ 600 AU, irradiated by a central star of type O9 and temperature ~ 31,000 K. The total luminosity of this system is 71,000 L_solar. An observed excess of 2.2 - 4.5 microns emission in the SED can be explained by our viewing a cavity opening or clumpiness in the shell structure whereby radiation from the warm interior of the shell can escape. We claim to detect the nearby water maser source W3 (H2O) at 31.4 and 37.1 microns using beam deconvolution of the FORCAST images. We constrain the flux densities of this object at 19.7 - 37.1 microns. Additionally, we present in situ observations of four young stellar and protostellar objects in the SOFIA field, presumably associated with the W3 molecular cloud. Results from the model SED fitting tool of Robitaille et al. (2006, 2007} suggest that two objects (2MASS J02270352+6152357 and 2MASS J02270824+6152281) are intermediate-luminosity (~ 236 - 432 L_solar) protostars; one object (2MASS J02270887+6152344) is either a high-mass protostar with luminosity 3000 L_solar or a less massive young star with a substantial circumstellar disk but depleted envelope; and one object (2MASS J02270743+6152281) is an intermediate-luminosity (~ 768 L_solar) protostar nearing the end of its envelope accretion phase or a young star surrounded by a circumstellar disk with no appreciable circumstellar envelope.Comment: 12 pages, 8 figures, 2 tables, accepted by Ap

    Interferometric imaging of carbon monoxide in comet C/1995 O1 (Hale-Bopp): evidence for a strong rotating jet

    Full text link
    Observations of the CO J(1-0) 115 GHz and J(2-1) 230 GHz lines in comet C/1995 O1 (Hale-Bopp) were performed with the IRAM Plateau de Bure interferometer on 11 March, 1997. The observations were conducted in both single-dish (ON-OFF) and interferometric modes with 0.13 km s-1 spectral resolution. Images of CO emission with 1.7 to 3" angular resolution were obtained. The ON-OFF and interferometric spectra show a velocity shift with sinusoidal time variations related to the Hale-Bopp nucleus rotation of 11.35 h. The peak position of the CO images moves perpendicularly to the spin axis direction in the plane of the sky. This suggests the presence of a CO jet, which is active night and day at about the same extent, and is spiralling with nucleus rotation. The high quality of the data allows us to constrain the characteristics of this CO jet. We have developed a 3-D model to interpret the temporal evolution of CO spectra and maps. The CO coma is represented as the combination of an isotropic distribution and a spiralling gas jet, both of nucleus origin. Spectra and visibilities (the direct output of interferometric data) analysis shows that the CO jet comprises ~40% the total CO production and is located at a latitude ~20 degrees North on the nucleus surface. Our inability to reproduce all observational characteristics shows that the real structure of the CO coma is more complex than assumed, especially in the first thousand kilometres from the nucleus. The presence of another moving CO structure, faint but compact and possibly created by an outburst, is identified.Comment: 20 pages, 26 figures. Accepted for publication in Astronomy & Astrophysic
    corecore