261 research outputs found
Particle Streak Velocimetry: A Diagnostic for High Speed Flows
This work describes the development and implementation of a novel velocimetry technique to probe the exhaust flow of a cold gas thruster. The diagnostic combines the advantages of standard particle velocimetry techniques and the ultra-fast imaging capabilities of a streak camera to probe high speed flows near continuously with improved spatial and velocity resolution compared to Particle Image Velocimetry. This “Particle Streak Velocimetry” technique tracks illuminated seed particles at up to 4.2 GHz allowing time-resolved measurement of one-dimensional flows exceeding 2000 m/s as are found in rocket nozzles and many other applications (US Provisional Patent filed 05/19/16). Single frame images containing multiple streaks are analyzed to find the slope of each incident particle. Tests with inert gas have been performed to validate and develop the technique in supersonic flows without background noise due to combustion. Exhaust centerline flow velocities of a cold gas nozzle flowing pure nitrogen have been probed with 300 nm titanium dioxide seed particles and a 450 nm, continuous-wave laser diode. Measured velocities on the order of 500 m/s were validated against schlieren images of the plume and stagnation temperature measurements, which can also be correlated to velocity for known flow compositions. Further tests using a mixture of helium and nitrogen have been performed with measured velocities of over 1100 m/s that are shown to agree with predicted behavior from isentropic flow analyses
Particle Streak Velocimetry of Supersonic Nozzle Flows
A novel velocimetry technique to probe the exhaust flow of a laboratory scale combustor is being developed. The technique combines the advantages of standard particle velocimetry techniques and the ultra-fast imaging capabilities of a streak camera to probe high speed flows near continuously with improved spatial and velocity resolution. This "Particle Streak Velocimetry" technique tracks laser illuminated seed particles at up to 236 picosecond temporal resolution allowing time-resolved measurement of one-dimensional flows exceeding 2000 m/s as are found in rocket nozzles and many other applications. Developmental tests with cold nitrogen have been performed to validate and troubleshoot the technique with supersonic flows of much lower velocity and without background noise due to combusting flow. Flow velocities on the order of 500 m/s have been probed with titanium dioxide particles and a continuous-wave laser diode. Single frame images containing multiple streaks are analyzed to find the average slope of all incident particles corresponding to the centerline axial flow velocity. Long term objectives for these tests are correlation of specific impulse to theoretical combustion predictions and direct comparisons between candidate green fuels and the industry standard, monomethylhydrazine, each tested under identical conditions
EXOGEN ultrasound bone healing system for long bone fractures with non-union or delayed healing: a NICE medical technology guidance
Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.This article has been made available through the Brunel Open Access Publishing Fund.A routine part of the process for developing National Institute for Health and Care Excellence (NICE) medical technologies guidance is a submission of clinical and economic evidence by the technology manufacturer. The Birmingham and Brunel Consortium External Assessment Centre (EAC; a consortium of the University of Birmingham and Brunel University) independently appraised the submission on the EXOGEN bone healing system for long bone fractures with non-union or delayed healing. This article is an overview of the original evidence submitted, the EAC’s findings, and the final NICE guidance issued.The Birmingham and Brunel Consortium is funded by NICE to act as an External Assessment Centre for the Medical Technologies Evaluation Programme
Molecular dynamics simulations of vibrated granular gases
We present molecular dynamics simulations of mono- or bidisperse inelastic
granular gases driven by vibrating walls, in two dimensions (without gravity).
Because of the energy injection at the boundaries, a situation often met
experimentally, density and temperature fields display heterogeneous profiles
in the direction perpendicular to the walls. A general equation of state for an
arbitrary mixture of fluidized inelastic hard spheres is derived and
successfully tested against numerical data. Single-particle velocity
distribution functions with non-Gaussian features are also obtained, and the
influence of various parameters (inelasticity coefficients, density...)
analyzed. The validity of a recently proposed Random Restitution Coefficient
model is assessed through the study of projected collisions onto the direction
perpendicular to that of energy injection. For the binary mixture, the
non-equipartition of translational kinetic energy is studied and compared both
to experimental data and to the case of homogeneous energy injection
(``stochastic thermostat''). The rescaled velocity distribution functions are
found to be very similar for both species
Genetic basis of thermal nociceptive sensitivity and brain weight in a BALB/c reduced complexity cross
Thermal nociception involves the transmission of temperature-related noxious information from the periphery to the CNS and is a heritable trait that could predict transition to persistent pain. Rodent forward genetics complement human studies by controlling genetic complexity and environmental factors, analysis of end point tissue, and validation of variants on appropriate genetic backgrounds. Reduced complexity crosses between nearly identical inbred substrains with robust trait differences can greatly facilitate unbiased discovery of novel genes and variants. We found BALB/cByJ mice showed enhanced sensitivity on the 53.5°C hot plate and mechanical stimulation in the von Frey test compared to BALB/cJ mice and replicated decreased gross brain weight in BALB/cByJ versus BALB/cJ. We then identified a quantitative trait locus (QTL) on chromosome 13 for hot plate sensitivity (LOD = 10.7; p < 0.001; peak = 56 Mb) and a QTL for brain weight on chromosome 5 (LOD = 8.7; p < 0.001). Expression QTL mapping of brain tissues identified H2afy (56.07 Mb) as the top transcript with the strongest association at the hot plate locus (FDR = 0.0002) and spliceome analysis identified differential exon usage within H2afy associated with the same locus. Whole brain proteomics further supported decreased H2AFY expression could underlie enhanced hot plate sensitivity, and identified ACADS as a candidate for reduced brain weight. To summarize, a BALB/c reduced complexity cross combined with multiple-omics approaches facilitated identification of candidate genes underlying thermal nociception and brain weight. These substrains provide a powerful, reciprocal platform for future validation of candidate variants
Total knee replacement after high tibial osteotomy: Time-to-event analysis and predictors
© 2021 Joule Inc. or its licensors. BACKGROUND: An important aim of high tibial osteotomy (HTO) is to prevent or delay the need for total knee replacement (TKR). We sought to estimate the frequency and timing of conversion from HTO to TKR and the factors associated with it. METHODS: We prospectively evaluated patients with osteoarthritis (OA) of the knee who underwent medial opening wedge HTO from 2002 to 2014 and analyzed the cumulative incidence of TKR in July 2019. The presence or absence of TKR on the HTO limb was identified from the orthopedic surgery reports and knee radiographs contained in the electronic medical records for each patient at London Health Sciences Centre. We used cumulative incidence curves to evaluate the primary outcome of time to TKR. We used multivariable Cox proportional hazards analysis to assess potential preoperative predictors including radiographic disease severity, malalignment, correction size, pain, sex, age, body mass index (BMI) and year of surgery. RESULTS: Among 556 patients who underwent 643 HTO procedures, the cumulative incidence of TKR was 5% (95% confidence interval [CI] 3%–7%) at 5 years and 21% (95% CI 17%–26%) at 10 years. With the Cox proportional hazards multivariable model, the following preoperative factors were significantly associated with an increased rate of conversion: radiographic OA severity (adjusted hazard ratio [HR] 1.96, 95% CI 1.12–3.45), pain (adjusted HR 0.85, 95% CI 0.75–0.96)], female sex (adjusted HR 1.67, 95% CI 1.08–2.58), age (adjusted HR 1.50 per 10 yr, 95% CI 1.17–1.93) and BMI (adjusted HR 1.31 per 5 kng/m2, 95% CI 1.12–1.53). INTERPRETATION: We found that 79% of knees did not undergo TKR within 10 years after undergoing medial opening wedge HTO. The strongest predictor of conversion to TKR is greater radiographic disease at the time of HTO
Navier-Stokes transport coefficients of -dimensional granular binary mixtures at low density
The Navier-Stokes transport coefficients for binary mixtures of smooth
inelastic hard disks or spheres under gravity are determined from the Boltzmann
kinetic theory by application of the Chapman-Enskog method for states near the
local homogeneous cooling state. It is shown that the Navier-Stokes transport
coefficients are not affected by the presence of gravity. As in the elastic
case, the transport coefficients of the mixture verify a set of coupled linear
integral equations that are approximately solved by using the leading terms in
a Sonine polynomial expansion. The results reported here extend previous
calculations [V. Garz\'o and J. W. Dufty, Phys. Fluids {\bf 14}, 1476 (2002)]
to an arbitrary number of dimensions. To check the accuracy of the
Chapman-Enskog results, the inelastic Boltzmann equation is also numerically
solved by means of the direct simulation Monte Carlo method to evaluate the
diffusion and shear viscosity coefficients for hard disks. The comparison shows
a good agreement over a wide range of values of the coefficients of restitution
and the parameters of the mixture (masses and sizes).Comment: 6 figures, to be published in J. Stat. Phy
Diffusion of impurities in a granular gas
Diffusion of impurities in a granular gas undergoing homogeneous cooling
state is studied. The results are obtained by solving the Boltzmann--Lorentz
equation by means of the Chapman--Enskog method. In the first order in the
density gradient of impurities, the diffusion coefficient is determined as
the solution of a linear integral equation which is approximately solved by
making an expansion in Sonine polynomials. In this paper, we evaluate up to
the second order in the Sonine expansion and get explicit expressions for
in terms of the restitution coefficients for the impurity--gas and gas--gas
collisions as well as the ratios of mass and particle sizes. To check the
reliability of the Sonine polynomial solution, analytical results are compared
with those obtained from numerical solutions of the Boltzmann equation by means
of the direct simulation Monte Carlo (DSMC) method. In the simulations, the
diffusion coefficient is measured via the mean square displacement of
impurities. The comparison between theory and simulation shows in general an
excellent agreement, except for the cases in which the gas particles are much
heavier and/or much larger than impurities. In theses cases, the second Sonine
approximation to improves significantly the qualitative predictions made
from the first Sonine approximation. A discussion on the convergence of the
Sonine polynomial expansion is also carried out.Comment: 9 figures. to appear in Phys. Rev.
- …