65 research outputs found

    Maintenance and Expansion: Modeling Material Stocks and Flows for Residential Buildings and Transportation Networks in the EU25

    Get PDF
    Material stocks are an important part of the social metabolism. Owing to long service lifetimes of stocks, they not only shape resource flows during construction, but also during use, maintenance, and at the end of their useful lifetime. This makes them an important topic for sustainable development. In this work, a model of stocks and flows for nonmetallic minerals in residential buildings, roads, and railways in the EU25, from 2004 to 2009 is presented. The changing material composition of the stock is modeled using a typology of 72 residential buildings, four road and two railway types, throughout the EU25. This allows for estimating the amounts of materials in in-use stocks of residential buildings and transportation networks, as well as input and output flows. We compare the magnitude of material demands for expansion versus those for maintenance of existing stock. Then, recycling potentials are quantitatively explored by comparing the magnitude of estimated input, waste, and recycling flows from 2004 to 2009 and in a business-as-usual scenario for 2020. Thereby, we assess the potential impacts of the EuropeanWaste Framework Directive, which strives for a significant increase in recycling. We find that in the EU25, consisting of highly industrialized countries, a large share of material inputs are directed at maintaining existing stocks. Proper management of existing transportation networks and residential buildings is therefore crucial for the future size of flows of nonmetallic minerals

    Supply versus use designs of environmental extensions in input–output analysis: Conceptual and empirical implications for the case of energy

    Get PDF
    Input–output analysis is one of the central methodological pillars of industrial ecology. However,the literature that discusses different structures of environmental extensions (EEs), that is, thescope of physical flows and their attribution to sectors in the monetary input–output table (MIOT),remains fragmented. This article investigates the conceptual and empirical implications of apply-ing two different but frequently used designs of EEs, using the case of energy accounting, whereone represents energy supply while the other energy use in the economy. We derive both exten-sions from an official energy supply–use dataset and apply them to the same single-region input–output (SRIO) model of Austria, thereby isolating the effect that stems from the decision for theextension design. We also crosscheck the SRIO results with energy footprints from the g lobalmulti-regional input–output (GMRIO) dataset EXIOBASE. Our results show that the ranking offootprints of final demand categories (e.g., household and export) is sensitive to the extensiondesign and that product-level results can vary by several orders of magnitude. The GMRIO-basedcomparison further reveals that for a few countries the supply-extension result can be twice thesize of the use-extension footprint (e.g., Australia and Norway). We propose a graph approachto provide a generalized framework to disclosing the design of EEs. We discuss the conceptualdifferences between the two extension designs by applying analogies to hybrid life-cycle assess-ment and conclude that our findings are relevant for monitoring of energy efficiency and emissionreduction targets and corporate footprint accounting

    The 'High-with-Low' Scenario Narrative: Key Themes, Cross-Cutting Linkages, and Implications for Modelling

    Get PDF
    We define a global ‘High-with-Low’ scenario that delivers high wellbeing with low energy and material resource consumption while limiting global warming in line with Paris Agreement targets. The High-with-Low scenario comprises a rich thematic narrative and a quantitative framework for interpreting the narrative using systems and sectoral modelling tools at different scales. The three central themes of the High-with-Low scenario are decent living standards for all, innovation and granularity, and digitalization. Inter-linkages between these themes emphasize drivers of change towards a High-with-Low future that include decentralization, adaptability to local needs, accelerated diffusion through peer and network effects, and the management of complexity on shared infrastructures. However, the direction of change is not deterministic. The High-with-Low scenario envisages a set of specific and strong governance institutions for coordinating a highly distributed global sustainability transition. To help develop and enrich these narrative aspects, we also set out some guidelines and parameterisations for quantitative model interpretations of the High-with-Low scenario. These guidelines are not universally prescriptive but rather define a set of quantitative reference points against which model inputs, processes, and outputs can be iteratively tested for consistency. In particular, we emphasize the overall development pattern of the High-with-Low scenario as one of conditional convergence in which energy services for well-being increase substantially in the Global South catching up to levels maintained in the Global North, while associated resource use tends to converge, combining a contraction in the Global North with relatively modest increases in the Global South

    Is there a 1970s syndrome? Analyzing structural breaks in the metabolism of industrial economies

    Get PDF
    In this paper we focus on long-term socio-ecological transitions from the agrarian to the industrial metabolic regime. Statistical analysis is used to identify structural breaks in the development of energy use in the second half of the 20th century. A stabilization of per capita energy and resource use in most high-income countries was reached in the early 1970s, after a period of accelerated growth of resource use since the end of World War II. Most empirical turns in trend coincide with the oil price crises of 1973 and 1979. This stabilization could offer lessons for a future sustainability transition

    How much infrastructure is required to support decent mobility for all? An exploratory assessment

    Get PDF
    Decarbonizing transport is crucial for achieving climate targets, which is challenging because mobility is growing rapidly. Personal mobility is a key societal service and basic need, but currently not available to everyone with sufficient quality and quantity. The basis for mobility and accessibility of desired destinations is infrastructure, but its build-up and maintenance require a substantial fraction of global resource use. The question arises, how much mobility and how much infrastructure are required to deliver decent, sustainable mobility. We explore the relations between mobility levels, mobility infrastructure and well-being. We synthesize definitions of decent mobility and assess mobility measurements and provide a novel estimate of mobility infrastructure stocks for 172 countries in the year ~2021. We then explore the relations between infrastructure, travelled distances, accessibility, economic activity and several ‘beyond GDP’ well-being indicators. We find that travelled distances and mobility infrastructure levels are significantly correlated. Above levels of ~92–207 t/cap of mobility infrastructure no further significant gains in well-being can be expected from a further increase of infrastructure. We conclude that high mobility in terms of distances travelled as well as build

    A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part II: synthesizing the insights

    Get PDF
    Strategies toward ambitious climate targets usually rely on the concept of "decoupling"; that is, they aim at promoting economic growth while reducing the use of natural resources and GHG emissions. GDP growth coinciding with absolute reductions in emissions or resource use is denoted as "absolute decoupling", as opposed to "relative decoupling", where resource use or emissions increase less so than does GDP. Based on the bibliometric mapping in part I (Wiedenhofer et al., this issue), we synthesize the evidence emerging from the selected 835 peer-reviewed articles. We evaluate empirical studies of decoupling related to final/useful energy, exergy, use of material resources, as well as CO2 and total GHG emissions. We find that relative decoupling is frequent for material use as well as GHG and CO2 emissions but not for useful exergy, a quality-based measure of energy use. Primary energy can be decoupled from GDP largely to the extent to which the conversion of primary energy to useful exergy is improved. Examples of absolute long-term decoupling are rare, but recently some industrialized countries have decoupled GDP from both production- and, weaklier, consumption-based CO2 emissions. We analyze policies or strategies in the decoupling literature by classifying them into three groups: (1) Green growth, if sufficient reductions of resource use or emissions were deemed possible without altering the growth trajectory. (2) Degrowth, if reductions of resource use or emissions were given priority over GDP growth. (3) Others, e.g. if the role of energy for GDP growth was analyzed without reference to climate change mitigation. We conclude that large rapid absolute reductions of resource use and GHG emissions cannot be achieved through observed decoupling rates, hence decoupling needs to be complemented by sufficiency-oriented strategies and strict enforcement of absolute reduction targets. More research is needed on interdependencies between wellbeing, resources and emissions

    A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part I: bibliometric and conceptual mapping

    Get PDF
    As long as economic growth is a major political goal, decoupling growth from resource use and emissions is a prerequisite for a sustainable net-zero emissions future. However, empirical evidence for absolute decoupling, i.e., decreasing resource use and emissions at the required scale despite continued economic growth, is scarce and scattered across different research streams. In this two-part systematic review, we assess how and to what extent decoupling has been observed and what can be learnt for addressing the sustainability and climate crisis. Based on a transparent approach, we systematically identify and screen more than 11,500 scientific papers, eventually analyzing full texts of 835 empirical studies on the relationship between economic growth (GDP), resource use (materials and energy) and greenhouse gas emissions. Part I of the review examines how decoupling has been investigated across three research streams: energy, materials and energy, and emissions. Part II synthesizes the empirical evidence and policy implications (Haberl et al. part II, in review). In part I, we examine the topical, temporal and geographical scopes, methods of analysis, institutional networks and prevalent conceptual angles. We find that in this rapidly growing literature, the vast majority of studies – decomposition, 'causality' and Environmental Kuznets Curve analysis – approach the topic from a statistical-econometric point of view, while hardly acknowledging thermodynamic principles on the role of energy and materials for socio-economic activities. A potentially fundamental incompatibility between economic growth and systemic societal changes to address the climate crisis is rarely considered. We conclude that the existing wealth of empirical evidence merits braver conceptual advances than we have seen thus far. Future work should focus on comprehensive multi-indicator long-term analyses, conceptually grounded on the fundamental biophysical basis of socio-economic activities, incorporating the role of global supply chains as well as the wider societal role and preconditions of economic growth

    Mapping material stocks of buildings and mobility infrastructure in the United Kingdom and the Republic of Ireland

    Get PDF
    Understanding the size and spatial distribution of material stocks is crucial for sustainable resource management and climate change mitigation. This study presents high-resolution maps of buildings and mobility infrastructure stocks for the United Kingdom (UK) and the Republic of Ireland (IRL) at 10 m, combining satellite-based Earth observations, OpenStreetMaps, and material intensities research. Stocks in the UK and IRL amount to 19.8 Gigatons or 279 tons/cap, predominantly aggregate, concrete and bricks, as well as various metals and timber. Building stocks per capita are surprisingly similar across medium to high population density, with only the lowest population densities having substantially larger per capita stocks. Infrastructure stocks per capita decrease with higher population density. Interestingly, for a given building stock within an area, infrastructure stocks are substantially larger in IRL than in the UK. These maps can provide useful insights for sustainable urban planning and advancing a circular economy

    MESSAGEix-Materials v1.0.0: Representation of Material Flows and Stocks in an Integrated Assessment Model

    Get PDF
    Extracting and processing raw materials into products in industry is a substantial source of CO2 emissions, which currently lacks process detail in many integrated assessment models (IAMs). To broaden the space of climate change mitigation options and to include circular economy and material efficiency measures in IAM scenario analysis, we developed MESSAGEix-Materials module representing material flows and stocks within the MESSAGEix-GLOBIOM IAM framework. With the development of MESSAGEix-Materials, we provide a fully open-source model that can assess different industry decarbonization options under various climate targets for the most energy and emissions-intensive industries: Aluminium, iron and steel, cement, and petrochemicals. We illustrate the model’s operation with a baseline and mitigation (2 degrees) scenario setup and validate base year results for 2020 against historical datasets. We also discuss the industry decarbonization pathways and material stocks of the electricity generation technologies resulting from the new model features

    High-resolution maps of material stocks in buildings and infrastructures in Austria and Germany

    Get PDF
    The dynamics of societal material stocks such as buildings and infrastructures and their spatial patterns drive surging resource use and emissions. Two main types of data are currently used to map stocks, night-time lights (NTL) from Earth-observing (EO) satellites and cadastral information. We present an alternative approach for broad-scale material stock mapping based on freely available high-resolution EO imagery and OpenStreetMap data. Maps of built-up surface area, building height, and building types were derived from optical Sentinel-2 and radar Sentinel-1 satellite data to map patterns of material stocks for Austria and Germany. Using material intensity factors, we calculated the mass of different types of buildings and infrastructures, distinguishing eight types of materials, at 10 m spatial resolution. The total mass of buildings and infrastructures in 2018 amounted to ∼5 Gt in Austria and ∼38 Gt in Germany (AT: ∼540 t/cap, DE: ∼450 t/cap). Cross-checks with independent data sources at various scales suggested that the method may yield more complete results than other data sources but could not rule out possible overestimations. The method yields thematic differentiations not possible with NTL, avoids the use of costly cadastral data, and is suitable for mapping larger areas and tracing trends over time
    • …
    corecore