320 research outputs found

    Rethinking Leading: The directive, non-directive divide

    Get PDF
    There is a dearth of legal and psychological consideration of the leading question during the trial process. This article argues the current approach to the leading question does not assist or promote the accuracy of witness evidence, particularly witnesses likely to be affected by such questions: children. We advance a revised definition of leading, differentiating between directive and non-directive questions. Directive questioning is the primary mischief to eliciting accurate witness testimony; we propose its presumptive prohibition. Non-directive leading is of less concern and should be the leading form open to use in cross-examination.David Caruso, Jacqueline Wheatcroft and James Krumrey-Quin

    Victims’ Voices:Understanding the Emotional Impact of Cyberstalking and Individuals’ Coping Responses

    Get PDF
    Recent quantitative research has identified similar detrimental effects on victims of cyberstalking as those that arise from traditional stalking. The current study thematically analyzed one hundred victim narratives gathered by means of an online survey with a view to assessing the mental health and well-being implications of the experience of cyberstalking. Coping strategies employed by victims and the perceived effectiveness of each strategy were also explored. The findings suggest that the emotional impact of cyberstalking predominantly includes comorbid anxiety and depression. Common coping strategies adopted by victims in our sample include avoidant coping, ignoring the perpetrator, confrontational coping, support seeking, and cognitive reframing. Taken together, the findings demonstrate that the ramifications of cyberstalking are widespread, affecting psychological, social, interpersonal, and economic aspects of life. To adapt, some victims made major changes to both their work and social life, with some ceasing employment and others modifying their usual daily activities. The widespread negative effects of cyberstalking identified in this study highlight that this phenomenon should be a concern to both legal and mental health professionals, particularly as the comments made by our sample illustrate the current inadequacy of response and provision. Recommendations are discussed and provided for law enforcement and mental health professionals

    Bioturbation artifacts in zero-age sediments

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 24 (2009): PA4212, doi:10.1029/2008PA001727.Most seafloor sediments are dated with radiocarbon, and the sediment is assumed to be zero-age (modern) when the signal of atmospheric testing of nuclear weapons is present (Fraction modern (Fm) > 1). Using a simple mass balance, we show that even with Fm > 1, half of the planktonic foraminifera at the seafloor can be centuries old, because of bioturbation. This calculation, and data from four core sites in the western North Atlantic indicate that, first, during some part of the Little Ice Age (LIA) there may have been more Antarctic Bottom Water than today in the deep western North Atlantic. Alternatively, bioturbation may have introduced much older benthic foraminifera into surface sediments. Second, paleo-based warming of Sargasso Sea surface waters since the LIA must lag the actual warming because of bioturbation of older and colder foraminifera.This work was funded in part by the Gary Comer Foundation and by NSF grant 0214144. A portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

    Human exercise-induced circulating progenitor cell mobilization is nitric oxide-dependent and is blunted in South Asian men

    Get PDF
    This article is available open access through the publisher’s website. Copyright @ 2010 American Heart Foundation.Objective— Circulating progenitor cells (CPC) have emerged as potential mediators of vascular repair. In experimental models, CPC mobilization is critically dependent on nitric oxide (NO). South Asian ethnicity is associated with reduced CPC. We assessed CPC mobilization in response to exercise in Asian men and examined the role of NO in CPC mobilization per se. Methods and Results— In 15 healthy, white European men and 15 matched South Asian men, CPC mobilization was assessed during moderate-intensity exercise. Brachial artery flow-mediated vasodilatation was used to assess NO bioavailability. To determine the role of NO in CPC mobilization, identical exercise studies were performed during intravenous separate infusions of saline, the NO synthase inhibitor l-NMMA, and norepinephrine.  Flow-mediated vasodilatation (5.8%±0.4% vs 7.9%±0.5%; P=0.002) and CPC mobilization (CD34+/KDR+ 53.2% vs 85.4%; P=0.001; CD133+/CD34+/KDR+ 48.4% vs 73.9%; P=0.05; and CD34+/CD45− 49.3% vs 78.4; P=0.006) was blunted in the South Asian group. CPC mobilization correlated with flow-mediated vasodilatation and l-NMMA significantly reduced exercise-induced CPC mobilization (CD34+/KDR+ −3.3% vs 68.4%; CD133+/CD34+/KDR+ 0.7% vs 71.4%; and CD34+/CD45− −30.5% vs 77.8%; all P<0.001). Conclusion— In humans, NO is critical for CPC mobilization in response to exercise. Reduced NO bioavailability may contribute to imbalance between vascular damage and repair mechanisms in South Asian men.British Heart Foundatio

    Visualization and chemical characterization of the cathode electrolyte interphase using He-ion microscopy and in situ time-of-flight secondary ion mass spectrometry

    Get PDF
    Unstable cathode electrolyte interphase (CEI) formation increases degradation in high voltage Li-ion battery materials. Few techniques couple characterization of nano-scale CEI layers on the macroscale with in situ chemical characterization, and thus, information on how the underlying microstructure affects CEI formation is lost. Here, the process of CEI formation in a high voltage cathode material, LiCoPO4, has been investigated for the first time using helium ion microscopy (HIM) and in situ time-of-flight (ToF) secondary ion mass spectrometry (SIMS). The combination of HIM and Ne-ion ToF-SIMS has been used to correlate the cycle-dependent morphology of the CEI layer on LiCoPO4 with a local cathode microstructure, including position, thickness, and chemistry. HIM imaging identified partial dissolution of the CEI layer on discharge resulting in in-homogenous CEI coverage on larger LiCoPO4 agglomerates. Ne-ion ToF-SIMS characterization identified oxyfluorophosphates from HF attack by the electrolyte and a Li-rich surface region. Variable thickness of the CEI layer coupled with inactive Li on the surface of LiCoPO4 electrodes contributes to severe degradation over the course of 10 cycles. The HIM–SIMS technique has potential to further investigate the effect of microstructures on CEI formation in cathode materials or solid electrolyte interphase formation in anodes, thus aiding future electrode development

    Towards in-situ TEM for Li-ion battery research

    Get PDF
    Due to recent developments in new battery materials for higher energy density applications there has been growing interest in new characterization techniques capable of time-resolved in situ/in operando analysis of dynamic Battery systems. This review provides an overview on recent development of liquid cell transmission electron microscopy (TEM) for Li-ion battery research and discusses the challenges, highlighting potential research areas. In-situ TEM offers the opportunity to study phenomena including solid electrolyte interphase (SEI) formation and phase changes during battery operation. There are two main challenging areas for in-situ TEM research (1) designing an in-situ TEM electrochemical cell that mimics a ‘real’ cell and (2) quantifying beam damage caused by electron irradiation of the electrolyte

    Enhancing memory with the Liverpool Interview Protocol: Is an association with hypnosis a problem?

    Get PDF
    The Liverpool Interview Protocol (LIP) is a brief memory facilitation procedure designed for use in forensic investigative interviews. However, as the LIP techniques were derived from hypnotic investigative interviewing techniques, concern has been expressed by some senior police officers about a possible negative association with hypnosis. The aim of the present study was to address this concern by investigating not only the accuracy of the LIP in facilitating memory but whether witnesses receiving the LIP judged themselves, and observers judged the witnesses, to be hypnotized using the Long Stanford Scale of Hypnotic Depth. The results showed that the LIP increased correct memory for details of a crime incident, without increasing errors or inflating confidence, whilst being no more associated by witnesses or observers with the label of ‘hypnosis’ than a standard interview or a rapport condition. It is concluded that a negative association with hypnosis does not appear to be a particular issue with the LIP. It is also noted that the Cognitive Interview has yet to receive similar scrutiny

    Novel Role of the IGF-1 Receptor in Endothelial Function and Repair: Studies in Endothelium-Targeted IGF-1 Receptor Transgenic Mice

    Get PDF
    We recently demonstrated that reducing IGF-1 receptor (IGF-1R) numbers in the endothelium enhances nitric oxide (NO) bioavailability and endothelial cell insulin sensitivity. In the present report, we aimed to examine the effect of increasing IGF-1R on endothelial cell function and repair. To examine the effect of increasing IGF-1R in the endothelium, we generated mice overexpressing human IGF-1R in the endothelium (human IGF-1R endothelium-overexpressing mice [hIGFREO]) under direction of the Tie2 promoter enhancer. hIGFREO aorta had reduced basal NO bioavailability (percent constriction to NG-monomethyl-l-arginine [mean (SEM) wild type 106% (30%); hIGFREO 48% (10%)]; P < 0.05). Endothelial cells from hIGFREO had reduced insulin-stimulated endothelial NO synthase activation (mean [SEM] wild type 170% [25%], hIGFREO 58% [3%]; P = 0.04) and insulin-stimulated NO release (mean [SEM] wild type 4,500 AU [1,000], hIGFREO 1,500 AU [700]; P < 0.05). hIGFREO mice had enhanced endothelium regeneration after denuding arterial injury (mean [SEM] percent recovered area, wild type 57% [2%], hIGFREO 47% [5%]; P < 0.05) and enhanced endothelial cell migration in vitro. The IGF-1R, although reducing NO bioavailability, enhances in situ endothelium regeneration. Manipulating IGF-1R in the endothelium may be a useful strategy to treat disorders of vascular growth and repair. Insulin-resistant type 2 diabetes characterized by perturbation of the insulin/IGF-1 system is a multisystem disorder of nutrient homeostasis, cell growth, and tissue repair (1). As a result, type 2 diabetes is a major risk factor for the development of a range of disorders of human health, including occlusive coronary artery disease (2), peripheral vascular disease (3), stroke (4), chronic vascular ulcers (5), proliferative retinopathy (6), and nephropathy (7). A key hallmark of these pathologies is endothelial cell dysfunction characterized by a reduction in bioavailability of the signaling radical nitric oxide (NO). In the endothelium, insulin binding to its tyrosine kinase receptor stimulates release of NO (8). Insulin resistance at a whole-body level (9,10) and specific to the endothelium (11) leads to reduced bioavailability of NO, indicative of a critical role for insulin in regulating NO bioavailability. The insulin receptor (IR) and IGF-1 receptor (IGF-1R) are structurally similar—both composed of two extracellular α and two transmembrane ÎČ subunits linked by disulfide bonds (12). As a result, IGF-1R and IR can heterodimerize to form insulin-resistant hybrid receptors composed of one IGF-1R-αÎČ complex and one IR-αÎČ subunit complex (13,14). We recently demonstrated that reducing IGF-1R (by reducing the number of hybrid receptors) enhances insulin sensitivity and NO bioavailability in the endothelium (15). To examine the effect of increasing IGF-1R specifically in the endothelium on NO bioavailability, endothelial repair, and metabolic homeostasis, we generated a transgenic mouse with targeted overexpression of the human IGF-1R in the endothelium (hIGFREO)

    Methodological approaches to determining the marine radiocarbon reservoir effect

    Get PDF
    The marine radiocarbon reservoir effect is an offset in 14C age between contemporaneous organisms from the terrestrial environment and organisms that derive their carbon from the marine environment. Quantification of this effect is of crucial importance for correct calibration of the &lt;sup&gt;14&lt;/sup&gt;C ages of marine-influenced samples to the calendrical timescale. This is fundamental to the construction of archaeological and palaeoenvironmental chronologies when such samples are employed in &lt;sup&gt;14&lt;/sup&gt;C analysis. Quantitative measurements of temporal variations in regional marine reservoir ages also have the potential to be used as a measure of process changes within Earth surface systems, due to their link with climatic and oceanic changes. The various approaches to quantification of the marine radiocarbon reservoir effect are assessed, focusing particularly on the North Atlantic Ocean. Currently, the global average marine reservoir age of surface waters, R(t), is c. 400 radiocarbon years; however, regional values deviate from this as a function of climate and oceanic circulation systems. These local deviations from R(t) are expressed as +R values. Hence, polar waters exhibit greater reservoir ages (&#948;R = c. +400 to +800 &lt;sup&gt;14&lt;/sup&gt;C y) than equatorial waters (&#948;R = c. 0 &lt;sup&gt;14&lt;/sup&gt;C y). Observed temporal variations in &#948;R appear to reflect climatic and oceanographic changes. We assess three approaches to quantification of marine reservoir effects using known age samples (from museum collections), tephra isochrones (present onshore/offshore) and paired marine/terrestrial samples (from the same context in, for example, archaeological sites). The strengths and limitations of these approaches are evaluated using examples from the North Atlantic region. It is proposed that, with a suitable protocol, accelerator mass spectrometry (AMS) measurements on paired, short-lived, single entity marine and terrestrial samples from archaeological deposits is the most promising approach to constraining changes over at least the last 5 ky BP

    The role of residence time distribution in the continuous steady-state mixed suspension mixed product removal crystallization of glycine

    Get PDF
    In this work, a vacuum-driven intermittent transfer technique has been implemented to solve transfer line blockage issues and facilitate steady-state cooling crystallization studies of α-glycine in a single- and two-stage mixed suspension mixed product removal (MSMPR) crystallizer. Experimental residence time distribution (RTD) analysis of the stirred tank MSMPR cascade is performed using an imperfect pulse method of the axial dispersion model to benchmark the mixing performance against that of tubular crystallizers and determine the influence of RTD on steady-state size distribution of α-glycine product. Process analytical technology (PAT) is used to monitor and understand crystallization process dynamics, and the effect of MSMPR operating temperature, mean residence time, and number of MSMPR stages on mean particle size, crystal size distribution, and yield is studied. Results show the significance of nucleation and growth mechanisms alongside RTD in determining steady-state size distribution, and the need for optimum control of supersaturation to benefit from improved RTDs provided by multistage MSMPR crystallizers
    • 

    corecore