69 research outputs found

    Optimisation of two-dimensional ion trap arrays for quantum simulation

    Get PDF
    The optimisation of two-dimensional (2D) lattice ion trap geometries for trapped ion quantum simulation is investigated. The geometry is optimised for the highest ratio of ion-ion interaction rate to decoherence rate. To calculate the electric field of such array geometries a numerical simulation based on a "Biot-Savart like law" method is used. In this article we will focus on square, hexagonal and centre rectangular lattices for optimisation. A method for maximising the homogeneity of trapping site properties over an array is presented for arrays of a range of sizes. We show how both the polygon radii and separations scale to optimise the ratio between the interaction and decoherence rate. The optimal polygon radius and separation for a 2D lattice is found to be a function of the ratio between rf voltage and drive frequency applied to the array. We then provide a case study for 171Yb+ ions to show how a two-dimensional quantum simulator array could be designed

    Generation of spin-motion entanglement in a trapped ion using long-wavelength radiation

    Get PDF
    Applying a magnetic-field gradient to a trapped ion allows long-wavelength radiation to produce a mechanical force on the ion's motion when internal transitions are driven. We demonstrate such a coupling using a single trapped Yb+171 ion and use it to produce entanglement between the spin and motional state, an essential step toward using such a field gradient to implement multiqubit operations

    Versatile ytterbium ion trap experiment for operation of scalable ion-trap chips with motional heating and transition-frequency measurements

    Get PDF
    We present the design and operation of an ytterbium ion trap experiment with a setup offering versatile optical access and 90 electrical interconnects that can host advanced surface and multilayer ion trap chips mounted on chip carriers. We operate a macroscopic ion trap compatible with this chip carrier design and characterize its performance, demonstrating secular frequencies >1 MHz, and trap and cool nearly all of the stable isotopes, including 171Yb+ ions, as well as ion crystals. For this particular trap we measure the motional heating rate 〈ṅ〉 and observe an 〈ṅ〉∝1/ω2 behavior for different secular frequencies ω. We also determine a spectral noise density SE(1 MHz)=3.6(9)×10-11 V2 m-2 Hz-1 at an ion electrode spacing of 310(10) μm. We describe the experimental setup for trapping and cooling Yb+ ions and provide frequency measurements of the 2S1/2↔2P1/2 and 2D3/2↔3D[3/2]1/2 transitions for the stable 170Yb+, 171Yb+, 172Yb+, 174Yb+, and 176Yb+ isotopes which are more precise than previously published work

    Ground-state cooling of a trapped ion Using long-wavelength radiation

    Get PDF
    We demonstrate ground-state cooling of a trapped ion using radio-frequency (rf) radiation. This is a powerful tool for the implementation of quantum operations, where rf or microwave radiation instead of lasers is used for motional quantum state engineering. We measure a mean phonon number of n¯=0.13(4) after sideband cooling, corresponding to a ground-state occupation probability of 88(7)%. After preparing in the vibrational ground state, we demonstrate motional state engineering by driving Rabi oscillations between the |n=0⟩ and |n=1⟩ Fock states. We also use the ability to ground-state cool to accurately measure the motional heating rate and report a reduction by almost 2 orders of magnitude compared with our previously measured result, which we attribute to carefully eliminating sources of electrical noise in the system

    Efficient preparation and detection of microwave dressed-state qubits and qutrits with trapped ions

    Get PDF
    We demonstrate a method for preparing and detecting all eigenstates of a three-level microwave dressed system with a single trapped ion. The method significantly reduces the experimental complexity of gate operations with dressed-state qubits, as well as allowing all three of the dressed states to be prepared and detected, thereby providing access to a qutrit that is well protected from magnetic field noise. In addition, we demonstrate individual addressing of the clock transitions in two ions using a strong static magnetic field gradient, showing that our method can be used to prepare and detect microwave dressed states in a string of ions when performing multi-ion quantum operations with microwave and radio frequency fields. The individual addressability of clock transitions could also allow for the control of pairwise interaction strengths between arbitrary ions in a string using lasers

    On the application of radio frequency voltages to ion traps via helical resonators

    Full text link
    Ions confined using a Paul trap require a stable, high voltage and low noise radio frequency (RF) potential. We present a guide for the design and construction of a helical coil resonator for a desired frequency that maximises the quality factor for a set of experimental constraints. We provide an in-depth analysis of the system formed from a shielded helical coil and an ion trap by treating the system as a lumped element model. This allows us to predict the resonant frequency and quality factor in terms of the physical parameters of the resonator and the properties of the ion trap. We also compare theoretical predictions with experimental data for different resonators, and predict the voltage applied to the ion trap as a function of the Q-factor, input power and the properties of the resonant circuit

    Resilient entangling gates for trapped ions

    Get PDF
    Constructing a large-scale ion trap quantum processor will require entangling gate operations that are robust in the presence of noise and experimental imperfection. We experimentally demonstrate how a new type of Mølmer-Sørensen gate protects against infidelity caused by heating of the motional mode used during the gate. Furthermore, we show how the same technique simultaneously provides significant protection against slow fluctuations and mis-sets in the secular frequency. Since this parameter sensitivity is worsened in cases where the ions are not ground-state cooled, our method provides a path towards relaxing ion cooling requirements in practical realizations of quantum computing and simulation

    Functional colour genes and signals of selection in colour polymorphic salamanders

    Get PDF
    Coloration has been associated with multiple biologically relevant traits that drive adaptation and diversification in many taxa. However, despite the great diversity of colour patterns present in amphibians the underlying molecular basis is largely unknown. Here, we use insight from a highly colour-variable lineage of the European fire salamander (Salamandra salamandra bernardezi) to identify functional associations with striking variation in colour morph and pattern. The three focal colour morphs—ancestral black-yellow striped, fully yellow and fully brown—differed in pattern, visible coloration and cellular composition. From population genomic analyses of up to 4,702 loci, we found no correlations of neutral population genetic structure with colour morph. However, we identified 21 loci with genotype–phenotype associations, several of which relate to known colour genes. Furthermore, we inferred response to selection at up to 142 loci between the colour morphs, again including several that relate to coloration genes. By transcriptomic analysis across all different combinations, we found 196 differentially expressed genes between yellow, brown and black skin, 63 of which are candidate genes involved in animal coloration. The concordance across different statistical approaches and ‘omic data sets provide several lines of evidence for loci linked to functional differences between colour morphs, including TYR, CAMK1 and PMEL. We found little association between colour morph and the metabolomic profile of its toxic compounds from the skin secretions. Our research suggests that current ecological and evolutionary hypotheses for the origins and maintenance of these striking colour morphs may need to be revisited.This research was supported by a Natural Environment Research Council; a Royal Society Research Grant; a Glasgow Natural History Society grant; a Wellcome Trust ISSF Catalyst Grant and a Spanish Ministry of Science Grant

    Roadmap on STIRAP applications

    Get PDF
    STIRAP (stimulated Raman adiabatic passage) is a powerful laser-based method, usually involving two photons, for efficient and selective transfer of populations between quantum states. A particularly interesting feature is the fact that the coupling between the initial and the final quantum states is via an intermediate state, even though the lifetime of the latter can be much shorter than the interaction time with the laser radiation. Nevertheless, spontaneous emission from the intermediate state is prevented by quantum interference. Maintaining the coherence between the initial and final state throughout the transfer process is crucial. STIRAP was initially developed with applications in chemical dynamics in mind. That is why the original paper of 1990 was published in The Journal of Chemical Physics. However, from about the year 2000, the unique capabilities of STIRAP and its robustness with respect to small variations in some experimental parameters stimulated many researchers to apply the scheme to a variety of other fields of physics. The successes of these efforts are documented in this collection of articles. In Part A the experimental success of STIRAP in manipulating or controlling molecules, photons, ions or even quantum systems in a solid-state environment is documented. After a brief introduction to the basic physics of STIRAP, the central role of the method in the formation of ultracold molecules is discussed, followed by a presentation of how precision experiments (measurement of the upper limit of the electric dipole moment of the electron or detecting the consequences of parity violation in chiral molecules) or chemical dynamics studies at ultralow temperatures benefit from STIRAP. Next comes the STIRAP-based control of photons in cavities followed by a group of three contributions which highlight the potential of the STIRAP concept in classical physics by presenting data on the transfer of waves (photonic, magnonic and phononic) between respective waveguides. The works on ions or ion strings discuss options for applications, e.g. in quantum information. Finally, the success of STIRAP in the controlled manipulation of quantum states in solid-state systems, which are usually hostile towards coherent processes, is presented, dealing with data storage in rare-earth ion doped crystals and in nitrogen vacancy (NV) centers or even in superconducting quantum circuits. The works on ions and those involving solid-state systems emphasize the relevance of the results for quantum information protocols. Part B deals with theoretical work, including further concepts relevant to quantum information or invoking STIRAP for the manipulation of matter waves. The subsequent articles discuss the experiments underway to demonstrate the potential of STIRAP for populating otherwise inaccessible high-lying Rydberg states of molecules, or controlling and cooling the translational motion of particles in a molecular beam or the polarization of angular-momentum states. The series of articles concludes with a more speculative application of STIRAP in nuclear physics, which, if suitable radiation fields become available, could lead to spectacular results
    corecore