7,973 research outputs found
Differential temperature transducer Patent
Differential thermopile for measuring cooling water temperature ris
Control of black hole evaporation?
Contradiction between Hawking's semi-classical arguments and string theory on
the evaporation of black hole has been one of the most intriguing problems in
fundamental physics. A final-state boundary condition inside the black hole was
proposed by Horowitz and Maldacena to resolve this contradiction. We point out
that original Hawking effect can be also regarded as a separate boundary
condition at the event horizon for this scenario. Here, we found that the
change of Hawking boundary condition may affect the information transfer from
the initial collapsing matter to the outgoing Hawking radiation during
evaporation process and as a result the evaporation process itself,
significantly.Comment: Journal of High Energy Physics, to be publishe
A general variational principle for spherically symmetric perturbations in diffeomorphism covariant theories
We present a general method for the analysis of the stability of static,
spherically symmetric solutions to spherically symmetric perturbations in an
arbitrary diffeomorphism covariant Lagrangian field theory. Our method involves
fixing the gauge and solving the linearized gravitational field equations to
eliminate the metric perturbation variable in terms of the matter variables. In
a wide class of cases--which include f(R) gravity, the Einstein-aether theory
of Jacobson and Mattingly, and Bekenstein's TeVeS theory--the remaining
perturbation equations for the matter fields are second order in time. We show
how the symplectic current arising from the original Lagrangian gives rise to a
symmetric bilinear form on the variables of the reduced theory. If this
bilinear form is positive definite, it provides an inner product that puts the
equations of motion of the reduced theory into a self-adjoint form. A
variational principle can then be written down immediately, from which
stability can be tested readily. We illustrate our method in the case of
Einstein's equation with perfect fluid matter, thereby re-deriving, in a
systematic manner, Chandrasekhar's variational principle for radial
oscillations of spherically symmetric stars. In a subsequent paper, we will
apply our analysis to f(R) gravity, the Einstein-aether theory, and
Bekenstein's TeVeS theory.Comment: 13 pages; submitted to Phys. Rev. D. v2: changed formatting, added
conclusion, corrected sign convention
On leading order gravitational backreactions in de Sitter spacetime
Backreactions are considered in a de Sitter spacetime whose cosmological
constant is generated by the potential of scalar field. The leading order
gravitational effect of nonlinear matter fluctuations is analyzed and it is
found that the initial value problem for the perturbed Einstein equations
possesses linearization instabilities. We show that these linearization
instabilities can be avoided by assuming strict de Sitter invariance of the
quantum states of the linearized fluctuations. We furthermore show that quantum
anomalies do not block the invariance requirement. This invariance constraint
applies to the entire spectrum of states, from the vacuum to the excited states
(should they exist), and is in that sense much stronger than the usual Poincare
invariance requirement of the Minkowski vacuum alone. Thus to leading order in
their effect on the gravitational field, the quantum states of the matter and
metric fluctuations must be de Sitter invariant.Comment: 12 pages, no figures, typos corrected and some clarifying comments
added, version accepted by Phys. Rev.
Perturbations of Matter Fields in the Second-order Gauge-invariant Cosmological Perturbation Theory
Some formulae for the perturbations of the matter fields are summarized
within the framework of the second-order gauge-invariant cosmological
perturbation theory in a four dimensional homogeneous isotropic universe, which
is developed in the papers [K.Nakamura, Prog.Theor.Phys., 117 (2007), 17.]. We
derive the formulae for the perturbations of the energy momentum tensors and
equations of motion for a perfect fluid, an imperfect fluid, and a signle
scalar field, and show that all equations are derived in terms of
gauge-invariant variables without any gauge fixing.Comment: (v1) 76 pages, no figure; (v2) minor revision, typos are corrected,
references are added; (v3) Title is changed, Compactified into 55 pages,
Comment on the comparison with the other work is added; (v4)typos are
correcte
Angular momentum-mass inequality for axisymmetric black holes
In these notes we describe recent results concerning the inequality for axially symmetric black holes.Comment: 7 pages, 1 figur
How red is a quantum black hole?
Radiating black holes pose a number of puzzles for semiclassical and quantum
gravity. These include the transplanckian problem -- the nearly infinite
energies of Hawking particles created near the horizon, and the final state of
evaporation. A definitive resolution of these questions likely requires robust
inputs from quantum gravity. We argue that one such input is a quantum bound on
curvature. We show how this leads to an upper limit on the redshift of a
Hawking emitted particle, to a maximum temperature for a black hole, and to the
prediction of a Planck scale remnant.Comment: 3 pages, essay for the Gravity Research Foundatio
The "physical process" version of the first law and the generalized second law for charged and rotating black holes
We investigate both the ``physical process'' version of the first law and the
second law of black hole thermodynamics for charged and rotating black holes.
We begin by deriving general formulas for the first order variation in ADM mass
and angular momentum for linear perturbations off a stationary, electrovac
background in terms of the perturbed non-electromagnetic stress-energy, , and the perturbed charge current density, . Using these
formulas, we prove the "physical process version" of the first law for charged,
stationary black holes. We then investigate the generalized second law of
thermodynamics (GSL) for charged, stationary black holes for processes in which
a box containing charged matter is lowered toward the black hole and then
released (at which point the box and its contents fall into the black hole
and/or thermalize with the ``thermal atmosphere'' surrounding the black hole).
Assuming that the thermal atmosphere admits a local, thermodynamic description
with respect to observers following orbits of the horizon Killing field, and
assuming that the combined black hole/thermal atmosphere system is in a state
of maximum entropy at fixed mass, angular momentum, and charge, we show that
the total generalized entropy cannot decrease during the lowering process or in
the ``release process''. Consequently, the GSL always holds in such processes.
No entropy bounds on matter are assumed to hold in any of our arguments.Comment: 35 pages; 1 eps figur
Light-sheets and Bekenstein's bound
From the covariant bound on the entropy of partial light-sheets, we derive a
version of Bekenstein's bound: S/M \leq pi x/hbar, where S, M, and x are the
entropy, total mass, and width of any isolated, weakly gravitating system.
Because x can be measured along any spatial direction, the bound becomes
unexpectedly tight in thin systems. Our result completes the identification of
older entropy bounds as special cases of the covariant bound. Thus,
light-sheets exhibit a connection between information and geometry far more
general, but in no respect weaker, than that initially revealed by black hole
thermodynamics.Comment: 5 pages, 1 figure; v2: published version, improved discussion of weak
gravity condition, final paragraph adde
- …
