We investigate both the ``physical process'' version of the first law and the
second law of black hole thermodynamics for charged and rotating black holes.
We begin by deriving general formulas for the first order variation in ADM mass
and angular momentum for linear perturbations off a stationary, electrovac
background in terms of the perturbed non-electromagnetic stress-energy, δTab, and the perturbed charge current density, δja. Using these
formulas, we prove the "physical process version" of the first law for charged,
stationary black holes. We then investigate the generalized second law of
thermodynamics (GSL) for charged, stationary black holes for processes in which
a box containing charged matter is lowered toward the black hole and then
released (at which point the box and its contents fall into the black hole
and/or thermalize with the ``thermal atmosphere'' surrounding the black hole).
Assuming that the thermal atmosphere admits a local, thermodynamic description
with respect to observers following orbits of the horizon Killing field, and
assuming that the combined black hole/thermal atmosphere system is in a state
of maximum entropy at fixed mass, angular momentum, and charge, we show that
the total generalized entropy cannot decrease during the lowering process or in
the ``release process''. Consequently, the GSL always holds in such processes.
No entropy bounds on matter are assumed to hold in any of our arguments.Comment: 35 pages; 1 eps figur