97,227 research outputs found

    Folded traveling wave maser structure Patent

    Get PDF
    Design of folded traveling wave maser structur

    Analysis of a spacecraft instrument ball bearing assembly lubricated by a perfluoroalkylether

    Get PDF
    An analysis of a spacecraft instrument ball bearing assembly, subjected to a scanning life test, was performed to determine the possible case of rotational problems involving these units aboard several satellites. The analysis indicated an ineffective transfer of a fluorinated liquid lubricant from a phenolic retainer to the bearing balls. Part of the analysis led to a novel HPLC separation method employing a fluorinated mobile phase in conjunction with silica based size exclusion columns

    Prospects for Extrasolar "Earths" in Habitable Zones

    Full text link
    We have shown that Earth-mass planets could survive in variously restricted regions of the habitable zones (HZs) of most of a sample of nine of the 102 main-sequence exoplanetary systems confirmed by 19 November 2003. In a preliminary extrapolation of our results to the other systems, we estimate that roughly a half of these systems could have had an Earth-mass planet confined to the HZ for at least the most recent 1000 Ma. The HZ migrates outwards during the main-sequence lifetime, and so this proportion varies with stellar age. About two thirds of the systems could have such a planet confined to the HZ for at least 1000 Ma at sometime during the main-sequence lifetime. Clearly, these systems should be high on the target list for exploration for terrestrial planets. We have reached this conclusion by launching putative Earth-mass planets in various orbits and following their fate with mixed-variable symplectic and hybrid integrators. Whether the Earth-mass planets could form in the HZs of the exoplanetary systems is an urgent question that needs further study.Comment: 7 pages, 2 figure

    Pressure-viscosity measurements for several lubricants to 5.5 x 10 to the 8th power Newtons per square meter (8 x 10 to the 4th psi) and 149 C (300 F)

    Get PDF
    A capillary viscometer was used to measure viscosity as a function of pressure, temperature, and shear stress for a number of lubricants. The conditions under which the measurements were made are specified. The results obtained for each material are analyzed. It was determined that all pressure-viscosity coefficients decreased with increasing temperature. Data from other techniques such as optical elastohydrodynamics, oscillating crystal, and low shear capillary viscometry were compared with the results obtained

    Energy-momentum balance in quantum dielectrics

    Full text link
    We calculate the energy-momentum balance in quantum dielectrics such as Bose-Einstein condensates. In agreement with the experiment [G. K. Campbell et al. Phys. Rev. Lett. 94, 170403 (2005)] variations of the Minkowski momentum are imprinted onto the phase, whereas the Abraham tensor drives the flow of the dielectric. Our analysis indicates that the Abraham-Minkowski controversy has its root in the Roentgen interaction of the electromagnetic field in dielectric media

    Evaluation of a Multizone Impedance Eduction Method

    Get PDF
    A computational study is used to evaluate the PyCHE impedance eduction method developed at the NASA Langley Research Center. This method combines an aeroacoustic duct propagation code based on numerical solution to the convected Helmholtz equation with a global optimizer that uses the Differential Evolution algorithm. The efficacy of this method is evaluated with acoustic pressure data simulated to represent that measured with one-zone, two-zone, and three-zone liners mounted in the NASA Langley Grazing Flow Impedance Tube. The PyCHE method has a normalized impedance error of approximately 0.2 for (uniform) one-zone liners with a length of at least 5, and produces quite reasonable results for liners as short as 2. Whereas the impedance of the liner has an effect on eduction accuracy, the amount of attenuation is shown to be the dominant parameter. Similar results are observed for two-zone liners, for which the impedance of each zone is unique. The two-zone results also indicate it is more difficult to accurately educe resistance than reactance, and a zone length of at least 6 (slightly longer than for uniform liners) is needed to limit the normalized error to 0.2. The PyCHE method is also demonstrated to successfully educe the impedances for each zone of a three-zone liner. These results are sufficiently encouraging to warrant the continued usage of the PyCHE impedance eduction method for single and multizone liners

    Structural modeling for control design (articulated multibody component representation)

    Get PDF
    High gain, high frequency flexible responses in gimbaled multibody systems are discussed. Their origin and physical significance are described in terms of detailed mass and stiffness modeling at actuator/sensor interfaces. Guyan Reduction, Generalized Dynamic Reduction, inadequate mass modeling detail, as well as system mode truncation, are shown to suppress the high gain high frequency response and thereby lose system flexibility important for stability and performance predictions. Model validation by modal survey testing is shown to risk similar loss of accuracy. Difficulties caused by high frequency responses in component mode simulations, such as DISCOS, and also linearized system mode simulations, are described, and approaches for handling these difficulties are discussed
    corecore