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High gain, high frequency flexible responses in gimbaled multibody systems are discussed. Their
origin and physical significance are described in terms of detailed mass and stiffness modeling at
actuator/sensor interfaces. Guyan Reduction, Generalized Dynamic Reduction, inadequate mass
modeling detail, as well as system mode truncation, are shown to suppress the high gain high

frequency response and thereby lose system flexibility, important for stability and performance
predictions. Model validation by modal survey testing is shown to risk similar loss of accuracy.
Difficulties caused by high frequency responses in component mode simulations, such as
DISCOS, and also linearized system mode simulations, are described, and approaches for handling
these difficulties are discussed.

Introduction

The control-structure-interaction problem is concerned with locally applied input forces or torques
and localized outputs at actuator/sensor interfaces. These localized inputs and outputs are usually
modeled as occurring at single points or sections of structural members. This creates difficulties in

regard to dynamic modeling, and careful flexibility and mass modeling at local input/output
locations is required to accurately predict dynamic response. Local flexibility is often important
because of mechanical details associated with actuators, sensors, and their mounting hardware.

The frequencies of vibration at which the dynamic responses occur, characterizing the local
flexibilities, depend on both the local flexibility and the mass modeling at the actuator/sensor
interfaces. The mass and inertia at the interfaces are difficult to quantify, particularly for rotational

degrees of freedom, and are often not done explicitly.

Typically the structural engineer will deliver Craig-Bampton component mode models, fixed at the
actuator/sensor interfaces of a servo-mechanism, to the controls engineer. The controls engineer

will then merge the component models, freeing the degrees of freedom associated with the control
force or torque, and perform a system level simulation. This often results in transfer functions with
high gain responses occurring at unexpected high frequencies. These high gain high frequency
(HGHF) responses are due to vibration modes associated with small local interface mass and
inertia connected to relatively stiff primary structure by flexible elements representing servo
mechanisms and fastener schemes. If HGHF responses do not occur the modeling may be suspect
for control-structure-interaction simulations.

This paper will address important aspects of flexibility and mass/inertia modeling of structure for
the controls problem as they influence solvability of the equations of motion, accuracy of control-
structure-interaction analyses, and testing procedures.
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L_I Flexibility and Ma_ Mo_lelin_

Multibody structures are connected by servo mechanisms that control the relative angle or
displacement between one flexible body and another. The servo mounting hardware and its internal
parts may cause significant loss of stiffness across the controlled joint. This is illustrated by the
hardware schematic in Figure 1 in which a motor is shown attached to a bracket which is in turn

attached to body A. The attachment scheme may use fasteners which add to the flexibility of the
bracket.

Pinion

v Axis of rotation i _ i

Figure 1. Hardware Schematic

Body B is connected to A through the gear contact forces, the pinion shaft, and some type of spline
detail not shown on the figure. These are also sources of flexibility. Thfs type Of hardware can

only be modeled accurately by a cooperative effort of structures and controls engineers. Some of
the flexibility and mass will be modeled by the controls engineer, and some by the stnictures
engineer. Therefore, modeling responsibilities need to be well defined to avoid exclusion or
duplication of flexibility and mass/inertia. The structural engineer should understand the system
block diagrams that the controls engineer will use in analysis. Similarly, the controls engineer
needs to understand the types of structural modeling approximations which would reduce the
acc_acy 0fthean_To iflustrate these points asimplified block diagrarnissh0wn in Figure 2.

In this example the controls engineer is responsible for modeling the motor shaft, gears, and the

motor itself. The structures engineer is responsible for everything else including the motor bracket
and fasteners. Body A should be supported at the motor rotor for modal analysis, and body B
should be supported at the gear, thereby including gear spline flexibility effects. The block diagram
shows that the driving torque at the hinge is determined from the difference between the rotations
in two instances: the motor and the pinion; and the pinion and the gear. Each relative rotation is
assigned a flexibility. This suggests that accuracy in computing local contributions to rotation is
important. The block diagram illustrates the complexity of actuator-to-structure modeling and the
degree to which the structures and controls engineers need to cooperatively build the dynamics
simulation.
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Figure 2. Control - Structure Modeling

Local flexibility modeling may not suffice to provide the accuracy needed at actuator/sensor
interfaces. Mass and inertia modeling are required to enable this flexibility in modal dynamics
models. Since many actuators apply torque and sensors resolve angular motions, it is necessary to
treat both rotational flexibilities and inertias very carefully, an area that many structural dynamicists
do not pursue in detail when developing models. For example, adding any local inertia will enable

the local flexibility, but may not properly define its frequency spectrum.

The vibration modes representing a large portion of the local flexibility often occur at very high
frequencies. The high frequencies result from a small inertia supported by local flexibility. Figure 3
attempts to illustrate this.

In Figure 3a the model uses only lumped masses, while the model in Figure 3b includes inertias as
well (at least at the hinged interface). The finite elements are intended to be small, aiming at an
accurate modeling of local flexibility. Therefore, the masses are very small, and in Figure 3b the
inertias are very small also. In the first case the modal analysis requires elimination of the rotational
freedom at the hinge. This is done by Guyan reduction, and as a result the effect of the local
flexibility is lost. In the second case the local inertias enable the local flexibility, all of which is

present in the modal analysis. The small inertias, undergoing.rotational modal motions supported
by the attached elastic elements, will have very high frequencies. The actual values of these modal
frequencies will depend on both the inertia values and the flexibility values of the model at the
actuator interface. It may be worth noting that if the lumped mass model is solved for vibration

modes without Guyan reduction, numerical error (round-off) may enable the local flexibility,
producing extremely high eigenvalues. The accuracy of this numerical process is questionable,

especially for controls applications, because it may affect the placement of low frequency transfer
function zeros.
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Total flexibility obtained
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Figure 3. Comparison of Models With and Without Inertia

It is reasonable to question how, starting with a Craig-Bampton model having frequencies to, for
example, 30 Hz, it is possible to obtain a merged (gimbal-free) model with a highest fre.quency of
perhaps 1000 Hz. The following brief discussion attempts to make this physically plausible. At the
component level the Craig-Bampton model contains interface matrices and deformation shapes that
fully capture the interface flexibility. When the Craig-Bampton model is used for system level
analysis its hinge rotation is made flee, and one extra mode, the rigid rotation, is added to the
modal set. There are Still three flexible modes, however, This is shown iia Figure 4.

. Craig-Bampton Model

llml •

\

Total flexi_i]i_ is present

System Model

..j]

f_

f=0 Hz

Large r__tation of interface

f=lHz

f=2Hz

l_gh

- Flexibility captured by high frequency mode

Figure 41 Cantilever and Pinned Modes Of B_am with End Inertia
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The rigid and fh'st two flexible modes are inertially dominated by the lumped masses and are
orthogonal with respect to these masses with only a very small influence from the inertia at the left
end. The highest mode has no "spatial room" to be orthogonal to the first three modes on the basis
of the lumped masses, because the "spatial room" has been fully used by the first three modes
(three modes : three masses). Therefore, the highest mode must have small displacements of the
lumped masses, using them as merely a fine adjustment, and consist mainly of the rotation of the
inertia at the left end. This is illustrated by the figure, from which it is clear why the highest modal
frequency is so large: its modal mass is derived almost entirely from the local inertia alone, and is
very small.

Effe¢_ of HGHF Response on Transfer Functi0n_

If the local flexibility at an actuator/sensor interface is large relative to the rest of the structure, and
the mass/inertia placed at that interface is very small, the collocated transfer function calculated at
the interface will have not only high frequency, but also high gain at high frequency. A large

portion of the total flexibility seen directly by the actuator is represented by a high frequency mode
of vibration. Change in the mass/inertia affects the frequency of the high gain response but has
little effect on the gain itself. A useful plot to illustrate this is one that shows the running sum of
modal gains versus frequency, and is shown in Figure 5.
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Figure 5. Gain Summation Plot for Pinned-Free Beam
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This figureillustratestheeffectson transferfunctionsof local inertiain thestructuralmodel.Such
a plot typically showsvery largegainat high frequency.Omitting the local inertia (with Guyan
reduction),or equivalently,truncatingthehigh frequencymodes,or equivalently,performingthe
modalanalysisby GeneralizedDynamicReduction,eliminatesthis gain,resulting in inaccurate
control responsepredictionsat all frequencies.This typeof plot is a simplecheck that should
alwaysbemadefor structuralmodeltransferfunctionsto evaluatethepresenceandimportanceof
HGHFresponsesassociatedwith aparticularhardwareapplicationandtransferfunction.If HGHF
modesdo occur, their accuracyandeffecton control responsemust bestudied.If they do not,
either the structuraldesignis very efficient andwell adaptedto the controlsapplication,or the
structuralmodelisdeficientfor control-structure-interactionsimulations(ie. localflexibility maybe
missing).If HGHF modesarepresenttheir effectsareimportantin low frequencyaswell ashigh
frequencydynamicspredictions.Thishasdifferentconsequencesfor componentmodeandsystem
modeformulations,aswill bediscussedlater.

The Bode plot in Figure 6 illustratestypical low frequencyeffectsof the presenceof HGHF
responsesfor asingle-input-single-output(SISO)collocatedtransferfunction.

Wi highfrequencyflexibility

Gain, dB

Total high frequency (local) flexibility

\

With high frequency flexibilit \
! \

\

T. E zero affected by high

frequency flexibility _/'/_Frequency

Figure 6. Effect of High Frequency Flexibility on Bode Gain

The effects derive from the placement of the low frequency transfer function zero. Bode plots

including high frequency flexibility show that all of the transfer function zeros, particularIy the
lowest ones, are moved to lower frequencies. In addition, a transfer function zero is produced
above the highest retained mode. The low frequency gain is reduced, resulting in loss of agility.
The gain is increased between the lowest zero and pole, a region where stability may be in question
because of compensator rolloff and phase. Above the first pole, gain is slightly reduced, improving
flexible mode stability. Finally, the high frequency flexibility eliminates the structural rolloff

customarily seen in truncated modal models. This figure and brief discussion suggest that reliable
control-structure-interaction studies require careful attention to local modeling and some means of
retaining HGHF responses. Various solution procedure options that effectively eliminate HGHF
response should be avoided. These include modal truncation, Guyan reduction, Generalized
Dynamic Reduction, and integration schemes that filter out high frequency responses.
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Extensionof the consequencesdiscussedherefor avery simplecaseto the complicatedmulti-
input-multi-output(MIMO) problemappearsto requirenumericalevaluationfor eachspecialcase.
It appears,however,thatimportantcontrolresponseconsequencesareaslikely to occurin MIMO
asin SISOsystems.

Numerical Examples

Examples are given below to help fix the ideas described above. These examples have counterparts
that have occurred in practice.

Example !: The following example is a simplification of a generic cantilevered structure connected
to an appendage by a servo mechanism. The actuator/sensor is assumed to be collocated and is
represented by a soft spring and inertia. The cantilevered structured is modeled by a beam that has
a fundamental frequency of 5.0 Hz when fixed at one end. The appendage is modeled by a beam
with a fixed end fundamental frequency of 1.0 Hz. Both beams are finite element models. For

simplicity, actuator/sensor hardware is modeled by a single spring and inertia on the cantilevered
structure side only. Figure 7 illustrates the model.

1 0.omn.
Rotational spring and

inertia representing
actuator/sensor hardware

Hinged joint(actuator/sensor freedom)

25 beam elements

Figure 7. Flexible Beams Connected By Controller

The spring and inertia produce a HGHF mode. The soft interface spring has been chosen such that
the gain of the HGHF mode is five times the sum of the gains of the other modes (a factor of five
is not uncommon, in practice, for models that have been validated by traditional methods). The
local inertia has been chosen to be arbitrarily small.

Figure 8 is a plot of the running sum of the modal gains for the collocated transfer function at the
actuator/sensor interface, with and without the HGHF mode.

Figure 9 is a Bode plot of the transfer function with and without the HGHF mode.

The HGHF response tends to swamp the effects of the other modes, causing the Bode gain to
remain high as the frequency increases. The low frequency transfer function zeros occur at lower
frequencies due to the HGHF response. An important feature is the gain increase just above the
lowest zero. This can cause low frequency stability problems.

Exampl¢ 2: This is a qualitative discussion that refers to the previous example. The text thus far has
referred to collocated transfer functions only. The HGHF response problem also applies to non-
collocated transfer functions. If the sensor had been chosen to be at the free end of the appendage

in the previous example, then care would be required to model local flexibility and inertia at that
location. The transfer function would now be affected by at least two HGHF modes. In addition,

the previous example assumed actuator flexibility to occur on only the cantilevered structure side.
In actuality, there is local flexibility, due to the actuator, on the appendage side also. If all three
sources of flexibility were modeled by single springs, there may be up to three HGI-IF modes each
representing a simplification of a portion of the local hardware flexibility.
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Examole 3: The previous two examples discussed local flexibilities that were modeled by single
rotational springs and inertias. Single spring approximations may be the result of condensing a
much more complicated interface flexibility model to a single degree of freedom spring. Figure 10

shows a more refined interface model that produces similar response to that discussed above, but
adds important features to the problem.

/ Hinged joint (actuator/sensor freedom)

Interface modeling

Figure 10. Hinged Beam With Locally Refined Modeling

The modeling includes a series of short (relative to the appendages that are connected by the
actuator/sensor interface hardware) flexible beams. In the case of a single rotational spring an
inertia had to be added to dynamically capture the local flexibility. Here, provided the short beam

elements closest to the interface are not much more flexible than the other beams modeling the
interface hardware, modes associated with the interface beams and lumped masses may capture a
large portion of the local interface flexibility. Adding inertias will enable the rest. The Figure 11
running sum gain plot shows the effect of interface flexibility and mass/inertia modeling on the
transfer function gains.

0.0025

0.0020

0.0015

0.0010
0

Figure 11.

Running Sum of
Modal Gains

Includes HGHF Modes from Lumped Mass and Inertia

es from Lumped Mass

Includes No HGHF Modes

.I I i ___1 II 1 • , ! .1 It It n

1000 2000 3000 4000 5000 6000

Frequency,.Hz

Gain Summation Plot for Beams Hinged at Flexible Interface
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Each of the HGHF modes shown on the plot (by the marked points) are associated with local
bending modes of the beam model representing the actuator/sensor interface hardware.

Testing to Validate Transfer Function Poles _nd Zeros

Testing to validate control-structure-interaction models is difficult because for the controls
application it is really the system transfer functions, not only the low frequency modal data, that are
needed. Unfortunately, tests to validate transfer function poles and zeros are subject to several
severe limitations. First, although the best test is a system level transfer function test, the hardware
to perform this test is generally not available until late in a program. Thus the data may confirm a
model but it is not timely for design purposes. Second, a fixed interface modal survey test may
partially confirm a model but it is unlikely that the available fixed interface for testing is truly the
actuator/sensor interface. In addition, the torquer may not be available for early testing. If it is
available it most likely cannot be physically separated into fixed interface parts as may be desirable
in the math model formulation. Even if it could be separated, high frequency data are not practically
obtainable in modal survey tests. Despite these real concerns over testing practicality and hardware
availability, it is worthwhile to outline an overall testing plan that, if implemented, would address
the model validation issue for controls. The testing would begin with fixed interface modal surveys
of structural components to determine the overall flexibility of the component tested, up to and
including an available fixed interface. This is illustrated by Figure_ 12.

t
\ i

Static Flexiblility Test

Figure 12.

Main structural element

i
Main structural element

Cantilever modal test

Structural Component Static and Modal Testing Scheme
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In order to test the actuator interface hardware it is necessary to supplement component modal

testing with static flexibility tests to characterize local flexibility. This will provide data to

accurately define flexibility of interface hardware. From these data Craig-Bamp.ton models can be
validated and local flexibilities characterized. Component mode dynamic analyms or system modal

analysis can proceed from this basis with a reasonable level of confidence. The models should
show HGHF responses if careful modeling of both local flexibility and inertia is done to match test
data and mass distribution in the interface region.

Finally, system level modal testing is also necessary. This provides low frequency validation of the
merging of all of the component models. It approximately describes the low frequency mode
shapes and the placement of the low frequency poles. The model resulting from component modal,
local static flexibility, and system modal testing may be able to predict system transfer functions in
the low frequency range. However, this prediction is a sensitive one. In particular, the system
transfer function zeros have not been validated directly and are unlikely to be accurately located.

Therefore system level transfer function testing, primarily to validate and adjust zero placement, is
a desirable final step in validating structural models for the controls application. Since such testing
is difficult and costly, and, as discussed above, may be impractical in some cases, analysis should

be done to assess the sensitivity of control response to uncertainty in the low frequenc.y transfer
function gain. This analysis is a combined structures and controls endeavor. For sensmve cases,
transfer function testing appears an essential final testing step.

HQHF Response EffeCt 9n Time Domain Simulations

Provided flexibility and mass have been modeled correctly, system level simulations will almost
always include HGHF responses. For component mode simulations this will require integration
with very small time steps. This is undesirable, and may even be completely impractical for many
problems. A way to avoid this problem by model changes is to add mass and inertia to the hinge
interfaces. Whether or not this can produce accurate control response predictions is problem
specific. In any case, this appears an undesirable approach. Other approaches necessitate
modification of the dynamic analysis methodology.

System mode simulations can escape this problem. These simulations can group the high
frequency responses and treat them statically. The total flexibility will be obtained, and the
integration can use large time steps. This approach has been very successful in practice.

Component mode methodologies, as presently formulated, do not have this capability. To follow
such an approach in component mode analysis it would be necessary to use free-free component
modes rather than cantilever or Craig-Bampton modes, and to include residual flexibility of all

components as static responses.

Summary.

High gain high frequency (HGHF) responses, in dynamic simulations, are the result of small local
interface masses and inertias connected to relatively stiff primary structure by flexible elements
representing servo mechanisms and their structural attachment schemes. Locally applied forces and
torques at control system actuators result in the static response of HGHF modes in addition to
dynamic response of low frequency modes.

HGHF responses affect transfer functions by moving all zeros to lower frequencies, particularly
those occurring in the low frequency spectrum, and increasing system gain. Excluding local

flexibility and local mass/inertia, or equivalently, reducing the modal set via modal truncation or
Generalized Dynamic Reduction, suppresses HGHF responses, and can cause inaccurate control-

structure-interaction predictions.
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Structures and controls engineers need to maintain a close working relationship. An understanding
of each others technical tools is necessary to assure accurate modeling of the control-structure-
interaction problem. Modeling responsibilities need to be well defined to avoid exclusion or
duplication of flexibility, and mass/inertia.

Component modal testing should be supplemented by static flexibility testing of local
actuator/sensor hardware since it is unlikely that the available fixed interface, for the component
modal test, is actually the actuator/sensor interface. System modal testing should be performed to
validate the low frequency poles. If analysis shows the control response to be sensitive to
uncertainty in the low frequency transfer function gain, it is desirable to supplement system modal
testing with transfer function testing.

If local flexibility and mass/inertia have been modeled correctly, system level simulations will
almost always include HGHF responses. System mode simulations can group the HGHF modes
statically, thereby retaining the total flexibility and allowing large time steps in time domain
analysis. Component mode simulations do not currently have this capability and face difficulties in
application to analysis of structures with detailed modeling of actuator/sensor interfaces.
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