1,200 research outputs found

    Phosphorus limited growth of the tropical seagrass Syringodium filiforme in carbonate sediments

    Get PDF

    Pauli susceptibility of nonadiabatic Fermi liquids

    Full text link
    The nonadiabatic regime of the electron-phonon interaction leads to behaviors of some physical measurable quantities qualitatively different from those expected from the Migdal-Eliashberg theory. Here we identify in the Pauli paramagnetic susceptibility χ\chi one of such quantities and show that the nonadiabatic corrections reduce χ\chi with respect to its adiabatic limit. We show also that the nonadiabatic regime induces an isotope dependence of χ\chi, which in principle could be measured.Comment: 7 pages, 3 figures, euromacr.tex, europhys.sty. Replaced with accepted version (Europhysics Letters

    High-Pressure Phase Diagram in the Manganites: a Two-site Model Study

    Full text link
    The pressure dependence of the Curie temperature TCT_C in manganites, recently studied over a wide pressure range, is not quantitatively accounted for by the quenching of Jahn-Teller distortions, and suggests the occurrence of a new pressure-activated localizing processes. We present a theoretical calculation of TCT_C based on a two-site double-exchange model with electron-phonon coupling interaction and direct superexchange between the t2g% t_{2g} core spins. We calculate the pressure dependence of TCT_C and compare it with the experimental phase diagram. Our results describe the experimental behavior quite well if a pressure-activated enhancement of the antiferromagnetic superexchange interaction is assumed

    κ(BEDTTTF)2X\kappa-(BEDT-TTF)_2X organic crystals: superconducting versus antiferromagnetic instabilities in an anisotropic triangular lattice Hubbard model

    Full text link
    A Hubbard model at half-filling on an anisotropic triangular lattice has been proposed as the minimal model to describe conducting layers of κ(BEDTTTF)2X\kappa-(BEDT-TTF)_2X organic materials. The model interpolates between the square lattice and decoupled chains. The κ(BEDTTTF)2X\kappa-(BEDT-TTF)_2X materials present many similarities with cuprates, such as the presence of unconventional metallic properties and the close proximity of superconducting and antiferromagnetic phases. As in the cuprates, spin fluctuations are expected to play a crucial role in the onset of superconductivity. We perform a weak-coupling renormalization-group analysis to show that a superconducting instability occurs. Frustration in the antiferromagnetic couplings, which arises from the underlying geometrical arrangement of the lattice, breaks the perfect nesting of the square lattice at half-filling. The spin-wave instability is suppressed and a superconducting instability predominates. For the isotropic triangular lattice, there are again signs of long-range magnetic order, in agreement with studies at strong-coupling.Comment: 4 pages, 5 eps figs, to appear in Can. J. Phys. (proceedings of the Highly Frustrated Magnetism (HFM-2000) conference, Waterloo, Canada, June 2000

    Static vs. dynamical mean field theory of Mott antiferromagnets

    Get PDF
    Studying the antiferromagnetic phase of the Hubbard model by dynamical mean field theory, we observe striking differences with static (Hartree-Fock) mean field: The Slater band is strongly renormalized and spectral weight is transferred to spin-polaron side bands. Already for intermediate values of the interaction UU the overall bandwidth is larger than in Hartree-Fock, and the gap is considerably smaller. Such differences survive any renormalization of UU. Our photoemission experiments for Cr-doped V2_2O3_3 show spectra qualitatively well described by dynamical mean field theory.Comment: 6 pages, 5 figures - one figure added and further details about quasiparticle dispersio

    Spin- and charge-density waves in the Hartree-Fock ground state of the two-dimensional Hubbard model

    Full text link
    The ground states of the two-dimensional repulsive Hubbard model are studied within the unrestricted Hartree-Fock (UHF) theory. Magnetic and charge properties are determined by systematic, large-scale, exact numerical calculations, and quantified as a function of electron doping hh. In the solution of the self-consistent UHF equations, multiple initial configurations and simulated annealing are used to facilitate convergence to the global minimum. New approaches are employed to minimize finite-size effects in order to reach the thermodynamic limit. At low to moderate interacting strengths and low doping, the UHF ground state is a linear spin-density wave (l-SDW), with antiferromagnetic order and a modulating wave. The wavelength of the modulating wave is 2/h2/h. Corresponding charge order exists but is substantially weaker than the spin order, hence holes are mobile. As the interaction is increased, the l-SDW states evolves into several different phases, with the holes eventually becoming localized. A simple pairing model is presented with analytic calculations for low interaction strength and small doping, to help understand the numerical results and provide a physical picture for the properties of the SDW ground state. By comparison with recent many-body calculations, it is shown that, for intermediate interactions, the UHF solution provides a good description of the magnetic correlations in the true ground state of the Hubbard model.Comment: 13 pages, 17 figure, 0 table

    Magnetic and lattice polaron in Holstein-t-J model

    Full text link
    We investigate the interplay between the formation of lattice and magnetic polaron in the case of a single hole in the antiferromagnetic background. We present an exact analytical solution of the Holstein-t-J model in infinite dimensions. Ground state energy, electron-lattice correlation function, spin bag dimension as well as spectral properties are calculated. The magnetic and hole-lattice correlations sustain each other, i.e. the presence of antiferromagnetic correlations favors the formation of the lattice polaron at lower value of the electron-phonon coupling while the polaronic effect contributes to reduce the number of spin defects in the antiferromagnetic background. The crossover towards a spin-lattice small polaron region of the phase diagram becomes a discontinuous transition in the adiabatic limit.Comment: revtex, 8 eps figures included NEW version. Appendix with a full proof include

    Quantum lattice dynamical effects on the single-particle excitations in 1D Mott and Peierls insulators

    Full text link
    As a generic model describing quasi-one-dimensional Mott and Peierls insulators, we investigate the Holstein-Hubbard model for half-filled bands using numerical techniques. Combining Lanczos diagonalization with Chebyshev moment expansion we calculate exactly the photoemission and inverse photoemission spectra and use these to establish the phase diagram of the model. While polaronic features emerge only at strong electron-phonon couplings, pronounced phonon signatures, such as multi-quanta band states, can be found in the Mott insulating regime as well. In order to corroborate the Mott to Peierls transition scenario, we determine the spin and charge excitation gaps by a finite-size scaling analysis based on density-matrix renormalization group calculations.Comment: 5 pages, 5 figure

    The Self-Trapping Line of the Holstein Molecular Crystal Model in One Dimension

    Full text link
    The ground state of the Holstein molecular crystal model in one dimension is studied using the Global-Local variational method, analyzing in particular the total energy, kinetic energy, phonon energy, and interaction energy over a broad region of the polaron parameter space. Through the application of objective criteria, a unique curve is identified that simply, accurately, and robustly locates the self-trapping transition separating small polaron and large polaron behavior

    Polaronic Heat Capacity in The Anderson - Hasegawa Model

    Get PDF
    An exact treatment of the Anderson - Hasegawa two - site model, incorporating the presence of superexchange and polarons, is used to compute the heat capacity. The calculated results point to the dominance of the lattice contribution, especially in the ferromagnetic regime. This behavior is in qualitative agreement with experimental findings.Comment: 9 pages, Revtex, 4 postscript figure
    corecore