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Polaronic Heat Capacity in The Anderson - Hasegawa Model
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Abstract

An exact treatment of the Anderson - Hasegawa two - site model, incorporating the presence of

superexchange and polarons, is used to compute the heat capacity. The calculated results point to

the dominance of the lattice contribution, especially in the ferromagnetic regime. This behavior is

in qualitative agreement with experimental findings.
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The Anderson-Hasegawa (AH) model [1] is a two-site realization of the basic idea of

double - exchange (DE) proposed by Zener [2] almost fifty years ago. In the DE scenario a

localized spin is visualized to be strongly ‘Hund’s rule’ coupled to an itinerant spin at the

same site governed by strength JH , whereas the itinerant spin can tunnel from site to site

accompanied by a ‘hopping integral’ t. Because of large JH the itinerant spin is polarized

along the localized spin, and as it hops to a neighboring site, it carries with it the memory of

its spin polarization, thereby polarizing the neighboring local spin as well. Thus transport is

correlated with spin ordering of localized moments, leading to concomitant metal-insulator

transition and magnetic ordering.

Since its inception the DE concept has undergone several extensions including a superex-

change process yielding antiferromagnetic coupling between localized moments, as well as

polaronic modification of hopping. Indeed polaronic contributions are considered to be quite

important for thermodynamic properties of a doped magnetic system e.g., La1−xXxMnO3,

(X = Ba, Ca, Sr etc). Both thermodynamic and transport phenomena in manganites sug-

gest the importance of polaron formation and the consequent localization of charge carriers

[3]. The two - site AH model provides an exactly calculable framework in which some of

these ideas can be tested, for evaluating measurable properties of manganites in the wider

context of a lattice. Besides it is important to keep track of the quantum nature of the

localized spin [4] – for instance, Mn4+ is a spin - 3
2

ion – even though in much of the DE

literature the localized moment is viewed as a classical vector. Such an exact quantum

treatment of the two-site AH model incorporating the roles of superexchange and polarons,

and their contributions to phase diagram and heat capacity, are the subject of this Brief

Report. For manganites superexchange interaction is also influenced by Jahn-Teller (JT)

coupling [5], which is however not considered here for the sake of simplicity.

With the preceding background to the scope and purpose of the present work we start

from the AH model including superexchange for which the Hamiltonian can be written as

HDE = −t
∑

τ

(c†1τc2τ + h.c.) − JH

2∑

i=1

~Si.~σi + J ~S1. ~S2. (1)
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Here c†iτ (ciτ ) is the creation(annihilation) operator of the itinerant electron at site i having

spin projection τ , ~Si is the localized spin, ~σi is the itinerant spin at site i and J is the strength

of the superexchange interaction between neighboring sites. For our case we consider | ~Si |=

S, i.e. the localized spins on all sites are taken to have the same value.

From the exact eigenvalue of HDE we may take the large JH limit by expanding upto

O(1/JH) and write an effective Hamiltonian for the two - site one electron case as [6]

Heff = −t
(S0 + 1

2
)

2S + 1
(c†1c2 + h.c) + J ~S1.~S2 + ∆EJ (n̂1 + n̂2). (2)

Here S0 is the magnitude of the total spin (localized plus itinerant) given by | ~S1 + ~S2 + ~σ |,

and

∆EJ =
J

2

2S − S̄ ′

2S + 1
(S̄ ′ + 1), (3)

where S̄ ′ = S0 − 1/2. The first term in Eq. (2) is the one obtained by Anderson-Hasegawa

when the localized spin is treated quantum mechanically. The third term, represented by the

number operators n̂1(2) for the itinerant electron, modifies the double-exchange mechanism

in the presence of the superexchange interaction given by the second term in Eq. (2). This

on-site term, proportional to ∆EJ , we should emphasize, is hitherto not widely considered

in the literature, and is a direct consequence of the quantum nature of the localized spin.

The spin index τ has been omitted from Eq. (2), for the sake of brevity, as the spin moment

of the itinerant electron in any case is parallel to the localized moment, in the JH −→ ∞

limit.

We now turn our attention to the polaronic effects. The minimal model which reflects

lattice carrier interaction on the double-exchange can be introduced by dovetailing the Hol-

stein mechanism on the Anderson-Hasegawa Hamiltonian. Therefore, in the limit of large

Hund’s rule coupling, we may write a two site, single polaron, Anderson-Hasegawa-Holstein

Hamiltonian from Eq. (2) as,

H = Heff + g1ω0

2∑

i=1

ni(bi + b†i ) + g2ω0

[
n1(b2 + b†2) + n2(b1 + b†1)

]
+ ω0

2∑

i=1

b†ibi, (4)

where, g1(g2) denotes the on-site (intersite) electron-phonon coupling strength. Note that

we have considered a single phonon mode for interatomic vibrations of frequency ω0 for
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which bi and b†i are the annihilation and creation operators. The Hamiltonian (4), without

the term ∆EJ , has been the subject of exact analytical study for S = ∞ and S = 1
2

cases

and a numerical solution for the S = 3
2

case [7].

We separate out the in-phase mode and the out-of-phase mode by introducing new phonon

operators a = (b1 + b2)/
√

2 and d = (b1 − b2)/
√

2 in the Hamiltonian. The in-phase mode

does not couple to the electronic degrees of freedom whereas the out-of-phase mode does,

leading to an effective electron - phonon Hamiltonian Hd, given by,

Hd = ω0d
†d + ∆EJ

2∑

i=1

ni − t

(
S0 + 1

2

2S + 1

)
(c†1c2 + h.c.) + g−ω0(n1 − n2)(d + d†) + J ~S1.~S2, (5)

where g− = (g1−g2)/
√

2. Following [8] we use a Modified Lang-Firsov (MLF) transformation

and obtain,

H̃d = eRHde
−R, (6)

where R = λ(n1 − n2)(d
† − d), λ being a variational parameter related to the displacement

of the d oscillator. The basis set is given by |±, N〉 = 1√
2
(c†1 ± c†2) |0〉e|N〉, where |+〉 and

|−〉 are the bonding and the antibonding electronic states and |N〉 denotes the Nth excited

oscillator state within the MLF phonon basis. The diagonal part of the Hamiltonian H̃d in

the chosen basis is treated as the unperturbed Hamiltonian (H0) and the remaining part of

the Hamiltonian H1 = H̃d − H0, as the perturbation.

The unperturbed ground state is the |+〉|0〉 state and the unperturbed energy, E
(0)
0 =

ǫp − teff + J ~S1.~S2. Where ǫp = ∆EJ − ω0(2g− − λ)λ and teff = t
S0+

1

2

2S+1
exp (−2λ2).

However, in the exact quantum limit of core spins, for given values of g− and J , E
(0)
0 can

have four values corresponding to ferromagnetic (FM), canted 1 (CA1), canted 2 (CA2)

and antiferromagnetic (AFM) orientation of the two spins for | ~S12 |=| ~S1 + ~S2 |= 3, 2, 1, 0

respectively. Th parameter λ is calculated by minimizing the unperturbed ground state

energy [8].

We have evaluated the perturbation correction to the energy upto the sixth order and

the wave function upto the fifth order. The convergence of the perturbation series is very

good for t/ω0 ≤ 1. Further, to study the effect of an external magnetic field (~h) we include
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a term −g̃µB(~S1 + ~S2).~h to the Hamiltonian in equation (4), g̃ being the Lande g factor.

We assume that the external magnetic field is along the direction of ~S12 and is expressed in

units of µeff(= g̃µB)=1.

The ferromagnetic (FM) and antiferromagnetic (AFM) orders are related to S12(=| ~S1 +

~S2 |) = 3 and 0, whereas S12 = 2 and 1 are referred to as canted 1 (CA1) and canted 2 (CA2)

states respectively. The Fig. 1 shows the phase diagram for the four possible spin orders for

our system, in the g− vs J plane. To study the polaronic character one calculates the static

correlation functions 〈n1u1〉0 and 〈n1u2〉0, where u1 and u2 are the lattice deformations at

sites 1 and 2 respectively, produced by an electron at site 1 [8]. The locations of the large

polaron region (A) and the small polaron region (B) are indicated in the g− vs J phase

digram (Fig. 1). Different ground states, required for our calculation below, can be located

from the phase diagram in Fig. 1. As our phase diagrams are very similar to the ones

recently presented by Capone and Ciuchi [7] we henceforth focus only on our new results

for the heat capacity.

As mentioned earlier our main emphasis in this Report is on heat capacity based on Eq.

(5). Recently, there have been many specific heat measurements of the colossal magnetore-

sistance (CMR) manganites at low temperatures with and without an external magnetic

field [9, 10, 11, 12]. According to experiments the specific heat CV has contributions from

conduction electrons, lattice and spin waves. The low temperature data [10, 12], of many

CMR materials, show a temperature dependence of the form CV = γT + βT 3 + δT 3/2, here

γ, β and δ are constants. The term γ arises from charge carriers and it is proportional to

the density of states at the Fermi level and βT 3 is associated with the lattice contribution,

β being related to the Debye temperature. The term δT 3/2 gives the spin wave contribution,

where the coefficient δ governs the spin wave stiffness. Okuda et al [9] have estimated the

electronic specific heat for La1−xSrxMnO3 in the ferromagnetic regime and concluded that

the carrier mass-renormalization near the metal-insulator transition at x = 0.16 is minimal.

They have also observed a decrease in the low temperature CV in the presence of a magnetic

field. Motivated by these observations, we have carried out a calculation of the specific heat,
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based on the partition function of the system which, from a cumulant expansion upto the

2nd order, is given by [13],

Z(β) = Z0(β)exp(

∫ β

0

dβ ′
∫ β′

0

dβ ′′〈H̃1(β
′)H̃1(β

′′)〉), (7)

where Z0(β) = Tr(e−βH0) ; H̃1(β) = eβH0H1e
−βH0 , and β = 1

KBT
. The expression 〈〉 denotes

the usual canonical averaging. The specific heat is then calculated (in arbitrary units) from

the well known relation:

CV = − d

dT
(

d

dβ
lnZ(β)). (8)

In the low temperature regime only the zero-and one-phonon states contribute.

As the specific heat has a bearing on fundamental properties of CMR materials it is

important to address whether the core spins should be treated classically (S → ∞) or

quantum mechanically (S = 3
2
) for its theoretical estimation. The difference in the quantum

and classical cases for specific heat, as far as the core spins are concerned, is exemplified in

Fig. 2(a) and Fig. 2(b) for FM and AFM cases respectively. Temperature is expressed as

T̃ = kBTω0. The quantum case only allows for discrete values of the relative angle between

two core spins, while in the classical case the angle varies continuously. The quantum results

evidently yield the correct zero temperature limit.

In the two-site single polaron model we do not have any scope to vary the carrier concen-

tration and probe different magnetic states. But we can identify the FM and AFM states

in g− vs J phase diagram, in which the FM state is stable for lower J values and the AFM

ground state is obtained for larger J values. In Fig. 3 we show the CV /T̃ vs T̃ 2 curves

for the FM and AFM cases. It is evident that in the FM case T 3 behavior of specific heat

is more pronounced which is in qualitative agreement with the results of [10, 11]. As the

stiffness coefficient δ is proportional to J [14], the spin wave contribution is not significant

in FM limits. However in the AFM limit (J = 0.2) the variation of CV /T̃ deviates from the

T 3 law and the spin wave contribution is non negligible. These findings are in qualitative

agreement with the measurements of Smolyaninova et al [11]. Moreover the magnitude of
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CV /T̃ for the AFM limit is higher than that in the FM limit, as in Smolyaninova et al[11].

The suppression of CV in the FM regime can be intuitively ascribed to the absence of spin

wave fluctuations, as mentioned earlier. However, while calculating heat capacity in S → ∞

limit it can be shown that spin wave contribution (i.e. CV ∝ T̃ 3/2 ) is dominant in FM case.

This is due to averaging over all possible relative orientations of core spins.

We show in Fig. 4 the variation of the specific heat in the low temperature region in

the FM state with zero and one phonon states. With application of an external magnetic

field ~h, CV takes lower values than for ~h = 0 which is expected, as the average energy

decreases with application of ~h in the FM state. For CA1(| ~S12 |= 2), CA2(| ~S12 |= 1)

and AFM (| ~S12 |= 0) states the external magnetic field will tend to align the core spins

to ferromagnetic order(| ~S12 |= 3). For CA1, CA2 and AFM states at low field and low

temperatures it can be shown from the present calculation that CV increases from the ~h = 0

limit as long as ~h does not shift | ~S12 | to higher values. For larger ~h, as the ground state

changes from lower | ~S12 | to higher ones, CV decreases in the low temperature region. For

CMR materials, there are some reports on measurements of field dependence of CV in the

FM state [9] and also in the half doped case [11]. It was found that for low doping regions,

CV decreases with an increasing magnetic field [9]. However the half doped material showed

CV /T as independent of applied field [11]. The present calculation of the external magnetic

field dependence of CV qualitatively agrees with these experimental findings in the FM limit.

In conclusion, the present calculation of CV using an exactly solvable model reveals some

of the important features of the double exchange polaronic system. The discreteness associ-

ated with the effective hopping as a result of the quantum nature of the local spin was shown

to have a significant consequence for thermodynamic properties. As analytic calculations of

the heat capacity for CMR material to fit experimental results are not starightforward, be-

cause of the involvement of several parameters, the present calculation for a simplified model

indeed serves an important role in indicating general trends. Further, a comparison of the

computed CV with measured values underscores the importance of the quantum nature of

the local spin, a fact often ignored in the current CMR literature.
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Figure Captions :

FIG. 1. The g− vs J phase diagram (~h = 0) for | ~S1 |=| ~S2 |= 3
2
, t = 1 and ω0 = 1. (A)

and (B) denote large polaron and small polaron region respectively.

FIG. 2. Variations of CV (in arbitrary units) with temperature T̃ (= kBTω0) for h = 0,

t = 1, ω0 = 1, in classical (solid line) and quantum (dashed line) formulations of the core

spins for (a) FM ground state(g− = 0.2, J = 0.02) and (b) AFM ground state (g− = 0.6,

J = 0.2).

FIG. 3. CV /T̃ vs T̃ 2 for h = 0, t = 1, ω0 = 1 in (a) FM ground state and (b) AFM

ground state for facilitating comparison with experiments. Here CV is in arbitrary unit and

T̃ = kBTω0. The results of Fig. 3(a) are in qualitative agreement with Fig. 2 of Hamilton

et al [10].

FIG. 4. Variations of CV (in arbitrary units) for g− = 0.6, J = 0.01 and t = 1, ω0 = 1,

for different values of the magnetic field h = 0, 0.01, 0.05, which exemplify the magnetic

field dependence of CV .
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