Abstract

We investigate the interplay between the formation of lattice and magnetic polaron in the case of a single hole in the antiferromagnetic background. We present an exact analytical solution of the Holstein-t-J model in infinite dimensions. Ground state energy, electron-lattice correlation function, spin bag dimension as well as spectral properties are calculated. The magnetic and hole-lattice correlations sustain each other, i.e. the presence of antiferromagnetic correlations favors the formation of the lattice polaron at lower value of the electron-phonon coupling while the polaronic effect contributes to reduce the number of spin defects in the antiferromagnetic background. The crossover towards a spin-lattice small polaron region of the phase diagram becomes a discontinuous transition in the adiabatic limit.Comment: revtex, 8 eps figures included NEW version. Appendix with a full proof include

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020