1,744 research outputs found

    Current and Future White Dwarf Mass-radius Constraints on Varying Fundamental Couplings and Unification Scenarios

    Full text link
    We discuss the feasibility of using astrophysical observations of white dwarfs as probes of fundamental physics. We quantify the effects of varying fundamental couplings on the white dwarf mass-radius relation in a broad class of unification scenarios, both for the simple case of a polytropic stellar structure model and for more general models. Independent measurements of the mass and radius, together with direct spectroscopic measurements of the fine-structure constant in white dwarf atmospheres lead to constraints on combinations of the two phenomenological parameters describing the underlying unification scenario (one of which is related to the strong sector of the theory while the other is related to the electroweak sector). While currently available measurements do not yet provide stringent constraints, we show that forthcoming improvements, expected for example from the Gaia satellite, can break parameter degeneracies and lead to constraints that ideally complement those obtained from local laboratory tests using atomic clocks.Comment: 11 pages, 8 figure

    Plio-Pleistocene time-averaged field in southern Patagonia recorded in lava flows

    Get PDF
    Paleomagnetic directions were obtained from stepwise alternating-field or thermal demagnetization of 53 lava flows from southern Patagonia (latitudes 49.5°-52.1 °S) that include the Pali-Aike volcanic field and the Meseta Viscachas plateau lavas. In addition to previous Miocene-late Quaternary ages of these flows, 40Ar/39Ar dates spanning from 0.1 to 15.4 Ma were obtained for 17 of the sites. All except one of the magnetic polarities coincide with the expected polarities of the magnetic polarity timescale [Cande and Kent, 1995] for the obtained 40Ar/39Ar ages. The mean direction from 33 sites (eliminating sites <4 Ma) that pass a selection criteria of α95 ≤5° is Dec = 358.7°,Inc = - 68.2°, α95 = 3.5°, a value that coincides within the statistical uncertainty with the direction of the geocentric axial dipole for that area (Inc = - 68.1°). Likewise, the mean virtual geomagnetic pole (VGP) coincides within the statistical uncertainty with the geographic North Pole. The secular variation described by the VGP angular standard deviation for these sites is 17.1°, a value expected for that latitude according to Model G of paleosecular variation [McFadden et al., 1988]. The characteristics of the data presented are optimum for time-averaged field (TAF) studies because of the good age control and good quality of the paleomagnetic data: (1) primary components of magnetization were obtained using principal component analysis [Kirschvink, 1980] from at least five points and maximum angular deviation ≤5°, (2) site means were calculated with Fisher statistics using at least three samples, and (c) 38 of the 53 flows had α95 ≤ 5°. No results (five sites) or high α95 values (≤5°) were obtained primarily from sites affected by lightning.Fil: Mejia, V.. University of Florida; Estados UnidosFil: Opdyke, N. D.. University of Florida; Estados UnidosFil: Vilas, Juan Francisco A.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Geología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Singer, B. S.. University of Wisconsin; Estados UnidosFil: Stoner, J. S.. State University of Colorado at Boulder; Estados Unido

    Age-related differences in head posture between patients with neck pain and pain-free individuals

    Get PDF
    Head posture and neck pain of chronic nontraumatic origin: a comparison between patients and pain-free persons.SFRH/BD/30735/20

    Production of chitosan based films enriched with oregano essential oil for increased antibacterial activity

    Get PDF
    During the last years, there has been an increasing interest in developing bio-based active films to improve food safety, extend food shelf life and reduce the use of chemical preservatives. Chitosan, a deacetylated derivative of chitin, is a linear polysaccharide consisting of -(1 4) glucosamine and N-acetylglucosamine residues with potential to be used as a food packaging/coating material. This biopolymer can be used in a wide range of applications in the food industry due to several interesting properties such as its biodegradability, biocompatibility, non-toxicity, antimicrobial activity and versatile physical properties such as its film-forming capacity. Recently, different strategies have been explored to improve its natural properties for the development of food packaging/coating materials with enhanced antimicrobial activity. In particular, the incorporation in chitosan films of essential oils (EO) with acknowledged antibacterial properties, as an alternative of synthetic preservatives, is a matter of great interest since they are generally perceived by consumers as being “natural” food additives. Thus, the objective of this work was the production of chitosan films enriched with oregano EO to further improve the natural antimicrobial properties of chitosan. The obtained films which were then evaluated for its antibacterial activity

    Methane and Nitrogen Abundances On Pluto and Eris

    Get PDF
    We present spectra of Eris from the MMT 6.5 meter telescope and Red Channel Spectrograph (5700-9800 angstroms; 5 angstroms per pix) on Mt. Hopkins, AZ, and of Pluto from the Steward Observatory 2.3 meter telescope and Boller and Chivens spectrograph (7100-9400 angstroms; 2 angstroms per pix) on Kitt Peak, AZ. In addition, we present laboratory transmission spectra of methane-nitrogen and methane-argon ice mixtures. By anchoring our analysis in methane and nitrogen solubilities in one another as expressed in the phase diagram of Prokhvatilov and Yantsevich (1983), and comparing methane bands in our Eris and Pluto spectra and methane bands in our laboratory spectra of methane and nitrogen ice mixtures, we find Eris' bulk methane and nitrogen abundances are about 10% and about 90%, and Pluto's bulk methane and nitrogen abundances are about 3% and about 97%. Such abundances for Pluto are consistent with values reported in the literature. It appears that the bulk volatile composition of Eris is similar to the bulk volatile composition of Pluto. Both objects appear to be dominated by nitrogen ice. Our analysis also suggests, unlike previous work reported in the literature, that the methane and nitrogen stoichiometry is constant with depth into the surface of Eris. Finally, we point out that our Eris spectrum is also consistent with a laboratory ice mixture consisting of 40% methane and 60% argon. Although we cannot rule out an argon rich surface, it seems more likely that nitrogen is the dominant species on Eris because the nitrogen ice 2.15 micron band is seen in spectra of Pluto and Triton.Comment: The manuscript has 44 pages, 15 figures, and four tables. It will appear in the Astrophysical Journa
    corecore