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[1] Paleomagnetic directions were obtained from stepwise alternating-field or thermal demagnetization of

53 lava flows from southern Patagonia (latitudes 49.5�–52.1�S) that include the Pali-Aike volcanic field

and the Meseta Viscachas plateau lavas. In addition to previous Miocene-late Quaternary ages of these

flows, 40Ar/39Ar dates spanning from 0.1 to 15.4 Ma were obtained for 17 of the sites. All except one of

the magnetic polarities coincide with the expected polarities of the magnetic polarity timescale [Cande and

Kent, 1995] for the obtained 40Ar/39Ar ages. The mean direction from 33 sites (eliminating sites �4 Ma)

that pass a selection criteria of a95 � 5� is Dec = 358.7�, Inc = �68.2�, a95 = 3.5�, a value that coincides
within the statistical uncertainty with the direction of the geocentric axial dipole for that area (Inc =

�68.1�). Likewise, the mean virtual geomagnetic pole (VGP) coincides within the statistical uncertainty

with the geographic North Pole. The secular variation described by the VGP angular standard deviation for

these sites is 17.1�, a value expected for that latitude according to Model G of paleosecular variation

[McFadden et al., 1988]. The characteristics of the data presented are optimum for time-averaged field

(TAF) studies because of the good age control and good quality of the paleomagnetic data: (1) primary

components of magnetization were obtained using principal component analysis [Kirschvink, 1980] from

at least five points and maximum angular deviation �5�, (2) site means were calculated with Fisher

statistics using at least three samples, and (c) 38 of the 53 flows had a95 � 5�. No results (five sites) or

high a95 values (>5�) were obtained primarily from sites affected by lightning.
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1. Introduction

[2] The characteristics of the Earth’s magnetic

field in the present are well known from magnetic

observatories and satellite, airplane, and ship data,

but the history of the magnetic field blurs as we

go into the past. The implementation of the

magnetic compass in Europe by 1200 ultimately

made possible historic records of the magnetic

field. Compilations of historic records dating back

to about 1600 have been used to model the

magnetic field [Jackson et al., 2000]. The Earth’s

magnetic field has also been modeled in other

timescales such as the last 3000 years using

archaeomagnetic data derived from pottery

[Constable et al., 2000] and in geologic times

(the past 5 Myr) using paleomagnetic data derived

from rock materials [e.g., Johnson and Constable,

1995] (hereinafter referred to as JC95). The anal-

ysis of these different kinds of records of the

magnetic field has helped to understand both the

time-averaged field (TAF) and its secular varia-

tion, which applied to the geologic past is referred

to as paleosecular variation (PSV).

[3] Two main different archives of PSV are avail-

able: sediments and lavas. PSV obtained from the

study of lava flows is generally referred to as

PSVL. Lee [1983] compiled a paleomagnetic da-

tabase from lavas of the past 5 Myr. This database

has been subsequently updated by Quidelleur et al.

[1994], Johnson and Constable [1996], and

McElhinny and McFadden [1997]. After applying

different selection criteria the number of records of

the renovated databases is not much greater than

the 2244 records in Lee’s original compilation. The

characteristics of any of these data sets are far from

being ideal, the main deficiencies being that (1) the

distribution over the Earth is not uniform, (2) most

studies have been undertaken using paleomagnetic

procedures that are now obsolete, and (3) age

control is limited.

[4] A paleosecular variation study from two areas

of southern Patagonia (latitudes 51.5� to 52.5�S
and latitudes 49.5� to 50.5�S) is presented in this

paper (Figure 1). The data will help to fill a gap of

paleomagnetic data from high southern latitudes.

The results that we obtained were compared with

those predicted by existing TAF and PSVL models.

The inclination anomalies depicted by some TAF

models for this area (JC95) as well as the expected

scatter of the virtual geomagnetic poles (VGPs)

relative to the Earth’s axis of rotation according to

Model G of secular variation [McFadden et al.,

1988] are tested.

[5] We obtained samples from and around Meseta

Viscachas (northern sampling area) and from the

Pali-Aike volcanic field (Figure 1), the southern-

most among a series of Late Cretaceous–Holocene

alkali basaltic plateaus [Skewes and Stern, 1979]

that extend east of the Patagonian Andes. Ramos

and Kay [1992] have proposed that back arc vol-

canism in southern Patagonia is the result of slab

window formation in the mantle produced by the

collision of the Chile ridge with the South Ameri-

can plate. The tectonic environment in southern-

most Patagonia is complicated by sinestral motion

of the Scotia plate along the southwestern tip of

Tierra del Fuego. Skewes and Stern [1979] suggest

the presence of thermal or mechanical perturbations

of the mantle related to the trench-transform triple

junction between South American, Antarctic and

Scotia plates, based on findings of ultramafic inclu-

sions and chemical characteristics of the Pali-Aike

basalts, that are indicative of a mantle origin and are

not observed in other Patagonian plateau basalts.

[6] The Meseta Viscachas and Pali-Aike basaltic

flows are locally interbedded with tills. K-Ar

and 40Ar/39Ar radioisotopic dates of these flows

[Mercer, 1976; Meglioli, 1992; Singer et al., 2004]

obtained to help depict the glacial history in

Patagonia indicate primarily Pliocene–Pleistocene
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ages. We obtained 40Ar/39Ar radioisotopic dates

from 17 of the paleomagnetic sites that support and

complement previous results.

2. Sampling and Sampling Area

[7] Most of the samples (49 sites) were collected in

Argentina during February of 2000. Four sites were

collected by Joe Stoner during February of 1998 in

the Chilean part of the Pali-Aike volcanic field.

Each site represents an individual lava flow. Ac-

cess to the outcrops was achieved by road and

tracks. Short hikes were occasionally necessary.

Normally 10 samples were collected at each site

and oriented using magnetic compass and sun

compass, when possible. Sun compass declinations

Figure 1. Location map of southern Patagonia showing sampling sites and radiometric dates obtained in this and
previous studies. The general locationmap to the left (modified from Skewes and Stern [1979]) showsUpper Cretaceous
to Quaternary alkali basaltic plateaus of Patagonia (red). The location of Meseta Viscachas and the Pali-Aike Volcanic
field (red-fill areas) is designated as MV and PAVF, respectively. The map to the right contains the location of
radiometric (40Ar/39Ar) and/or paleomagnetic sampling sites (red-filled triangles pointing up). The sampling sites of
previously obtained 40Ar/39Ar [Meglioli, 1992] and K/Ar [Mercer, 1976] radiometric dates in the area are shown by
squares and triangles pointing down, respectively. Results of radioisotopic dates (in Ma) are within ellipses.
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were obtained for 75% of the collected samples

and used for further calculations when they dif-

fered by 5� or more from the magnetic compass

declinations. Two lava flows from the Chilean side

of Patagonia were sampled twice and their data

combined. This way, the pairs of sites PA3 and

PA6 (PA3-6) and sites PA4 and PA5 (PA4-5) were

combined.

2.1. Northern Sampling Area

[8] This region is adjacent to the Andes and

consequently the relief is high. Lava flows east

of the Andes are now often exposed in cliffs that

have resulted from scarp retreat. Lava flows along

these scarps outcrop in stratigraphic sequences

composed usually of several (more than 3) flows.

2.2. Pali-Aike Volcanic Field

[9] The area sampled in the Pali-Aike volcanic

field is predominantly flat and covered with Pata-

gonian gravel. Some topography is created by lava

flows and volcanic centers. We sampled lava flows,

usually <10 m thick exposed in areas around and

roughly along the eastern parts of the Rio Gallegos

and Rio Chico valleys. In the area around Rio

Gallegos, individual flows can be traced for a few

kilometers, and up to three lava flows were sam-

pled in stratigraphic order. Volcanic cones and

eruptive centers are more eroded in the Rio Galle-

gos than in the Rio Chico area. In the Rio Chico

area cinder cones (often aligned indicating fissure

volcanism) are very well preserved. Examples of

these cinder cones are Cerro de los Frailes, Cerro

Conventos and Cerro Tres Hermanos. The geo-

morphologic differences between these two areas

of the Pali-Aike volcanic field suggest that the lava

flows that outcrop along Rio Gallegos are gener-

ally older than those that outcrop along Rio Chico,

this is in agreement with results obtained from

radioisotopic dating.

3. The 40Ar/39Ar Geochronology

[10] The 40Ar/39Ar radioisotopic dating was carried

out at the University of Wisconsin-Madison. Sam-

ples consisted of 50 mg of 180–500 mm fraction of

holocrystalline groundmass that were prepared by

crushing, sieving, magnetic sorting and picking

under a binocular microscope. Samples were irra-

diated at the Oregon State University Triga reactor.
40Ar/39Ar dating was applied using incremental

heating technique. Ages were calculated relative

to the 1.94 ± 0.012 Ma Alder Creek Rhyolite

sanidine that is intercalibrated to the 28.34 ±

0.16 Ma Taylor Creek Rhyolite sanidine [Renne

et al., 1998]. The preferred ages were the isochron

rather than the plateau ages. This way, no assump-

tion is made about trapped argon and estimates of

analytical precision and data scatter are considered.

Our ages are about 0.6% older than the ages used

by Cande and Kent [1995] to establish the geo-

magnetic polarity timescale (GPTS) because we

have used updated ages of the argon standards.

Further details about sample preparation as well as

laboratory and data analysis are as described by

Singer et al. [2002]. Table 1 contains a summary of

results from 18 40Ar/39Ar experiments.

4. Paleomagnetic Analysis

[11] Laboratory analysis was carried out in the

paleomagnetic laboratory at the University of Flor-

ida. Alternating-field (AF) demagnetization was

done using a Dtech D-200 AF demagnetizer and

thermal demagnetization using a Schonstedt oven.

Magnetic measurements were made in a 2G Cryo-

genic magnetometer in a shielded room. Pilot sets

of samples composed of one sample per site and

three samples per site were run using stepwise

(around 17 steps) AF and thermal demagnetization,

respectively to choose which method of demagne-

tization was more appropriate for each site. The

general agreement between the directions obtained

from AF and thermal demagnetization (Figures 2a

and 2b) indicates that any CRM acquired during

heating does not alter significantly the primary

direction of magnetization, possibly due to low

field conditions within the oven.

[12] Thermal demagnetization was the preferred

procedure for processing all the samples from

each site, except when the orthogonal projections

from thermal demagnetization were more difficult

to interpret than those from AF demagnetization

(Figure 2a) or when the site was affected by
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lightning (Figures 2c and 2d). The most distinctive

symptoms of sites being affected by lightning are

scatter in directions and high intensity of the NRM

(reaching around 20 A/m in some of the samples

whereas the intensity of magnetization of the sites

not affected by lightning is around 4 A/m). Twelve

of our sites showed signs of being affected by

lightning; therefore we applied AF demagnetiza-

tion, which is the most successful method to

remove the overprint caused by lightning-induced

IRM. The remaining 20 sites that were treated using

AF demagnetization were those in which the

thermal treatment produced a noisy orthogonal

projection or rapid loss of most of the magnetiza-

Figure 2. Examples of Zijderveld diagrams. Figures 2a and 2b are AF and thermal demagnetization (left and right,
respectively) on replicate samples. Figure 2a shows a case in which the thermal demagnetization curve is difficult to
interpret and the AF demagnetization curve is not, while both methods still indicate the same general direction.
Figure 2b is an example of both AF and thermal demagnetization curves showing similar results and Figures 2c and
2d show demagnetization curves of sites affected by lightning. Approximate intensity values are in A/m.
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tion during the first few temperature steps, while

results from AF demagnetization were clear. Other

researchers have also documented more successful

AF versus thermal demagnetization treatments on

basaltic flows [e.g., Camps et al., 2001; Szeremeta

et al., 1999]. Despite the preference to apply

thermal demagnetization, AF demagnetization

was used more times (in 32 sites) than thermal

demagnetization (in 21 sites).

5. Data Analysis and Selection Criteria

[13] The procedures to obtain and process paleo-

magnetic data were aimed at obtaining high quality

results. We followed the procedures and selection

criteria for data analysis used by Tauxe et al.

[2000]. That is, the primary component of magne-

tization from individual samples was obtained

using principal component analysis [Kirschvink,

1980] from a segment of at least 5 points of the

orthogonal projection directed toward the origin

and with maximum angular deviation � 5�. Site
mean directions were calculated from at least 3

samples per site using Fisher [1953] statistics and

selected as successful when a95 values were �5�
(rounded to the nearest integer).

[14] A summary of the paleomagnetic results of all

the sites is contained in Table 2 and the data plotted

in Figures 3 and 4a. We obtained successful

paleomagnetic results from most of the sites (ex-

cept site PA1) that were treated using thermal

demagnetization. AF demagnetization was applied

to 32 sites. Among the 12 sites treated using AF

demagnetization, as an alternative for treating

samples affected by lightning, 4 sites had random

directions (no results), 6 sites had a95 values >5�
and only 2 sites had a95 � 5�, complying with our

selection criteria. Among the remaining 20 sites

that were treated using AF demagnetization only 4

sites did not pass the selection criteria.

[15] Many of the sites that were rejected occupy

the periphery of the overall distribution of paleo-

magnetic directions (Figure 3), which suggests that

the applied selection criteria are successfully filter-

ing out noise in the paleomagnetic data. Likewise

the application of detailed stepwise demagnetiza-

tion seems to improve the quality of the data.

Previous paleomagnetic analysis by Fleck et al.

[1972] in a sequence of lava flows interbedded

with tills from Cerro El Fraile (south of Lago

Argentino), that used mild or no demagnetization

techniques, rendered results with a95 values higher

than 10�, that do not pass our selection criteria.

6. Radioisotopic Ages

[16] The radioisotopic dates that we obtained from

17 of the 53 paleomagnetic sites sampled indicate

mostly Pliocene–Pleistocene ages. Mercer [1976],

Meglioli [1992], and Singer et al. [2004] have

obtained similar results (Figure 1 and Tables 1

and 2). Table 1 shows a summary of the radioiso-

topic results obtained in this study where analytical

uncertainty is reported as 2s. The preferred ages

(isochrons) are also shown in Table 2. Figure 5

shows two examples of age spectra and isochrons.

6.1. Northern Sampling Area

[17] Seven of the 20 sites in this area were dated.

In all cases the magnetic polarities coincided with

the ones expected from the magnetic polarity

timescale [Cande and Kent, 1995]. Flows PT31

and PT32 with reverse polarity were dated at

15.4 Ma. These two flows were not considered

for the calculation of mean directions or mean

VGPs, because their ages are out of the scope of

this study. The nearby flows PT33 (a dyke with

intermediate direction), PT34 and PT30 located

close to the previously mentioned sites were not

considered either, because of lack of age control.

The isochron ages of the remaining dated flows in

this area indicated either Gauss or Gilbert magnetic

chrons (spanning from 2.98 to 4.08 Ma) in agree-

ment with previously dated nearby sites [Mercer,

1976]. Most of the sites that were not dated crop

out in stratigraphic sequences in which at least one

of the flows was dated. In these cases we assumed

for the undated flows the magnetic chron obtained

for the dated lava flow in that sequence, provided

that the same polarity was observed among all lava

sequences. The only stratigraphic sequence in

which no lava flow was radioisotopically dated

was that composed of flows PT39 and PT40.

Because of their normal polarity and closeness to

flows PT41 (determined as Gauss) they probably
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Table 2. Summary of Paleomagnetic Resultsa

Site U/L

Site

Dec Inc SC N
a95

Dir
K
Dir

Th/
AF L

VGP
a95

VGP
K

VGP
R.D.,
Ma U (±) RLat Long Lat Long

PT1 �51.74 �70.15 – – 9 0/9 – – AF – – –
PT2 �51.74 �70.17 140.8 64.7 0 6/10 14.4 22 AF X �64.1 9.9 17.9 15 1.3 0.03 a
PT3 �51.78 �70.23 357.1 �65.7 9 8/9 3.7 231 Th 86 263 5.5 103
PT4 �51.94 �70.42 142 60.5 0 7/10 3.2 368 Th �62.4 26.4 4.1 216
PT5 �51.68 �70.19 196.7 66.0 0 5/10 4.7 264 AF X �78.7 189.9 7.4 107
PT6 �51.88 �70.66 217.7 59.0 0 10/10 1.4 1202 Th �61.6 189.4 1.8 721 8.67 0.15 a
PT7 �51.89 �70.72 186.4 60.4 9 8/9 2.3 605 AF �78.6 134.4 3.2 302 1.14 0.02 a
PT8 �51.87 �70.59 185.4 60.7 8 7/8 4 229 AF �79.2 132.2 5.8 108
PT9 �51.84 �70.51 183.4 71 10 4/10 7.1 167 AF X �85.4 264.4 10.8 73 0.857 0.032 a
PT10 �51.85 �70.52 172.9 76.5 10 10/10 2.4 391 Th �76.9 302.8 4.3 129
PT11 �51.86 �70.52 4.5 �57.1 11 9/11 3.4 235 AF 75.7 303.9 4.1 158 9.16 0.08 a
PT12 �51.79 �70.28 184.6 60.3 10 3/10 12 107 AF X �79.2 130.2 16.8 55
PT13 �51.78 �70.27 355.8 �71.7 10 10/10 2.4 400 Th 84.6 134.8 4.1 142 0.486 0.096 a
PT14 L �51.72 �70.15 200.5 68.4 11 9/11 4.3 147 AF �77.4 209.2 6.6 63 1.79 0.12 a
PT15 �51.72 �70.15 170.4 54.4 1 5/11 3.3 537 AF �71.9 83.8 4.2 326
PT16 U �51.71 �70.15 150.2 72.6 7 6/10 5.5 149 AF �71.7 346.3 8.5 63
PT17 �51.79 �70.00 – – 10 0/10 – – AF X – –
PT18 �51.83 �70.03 – – 0 0/10 – – AF X – –
PT19 �51.90 �70.05 356 �76.5 0 9/10 3.5 222 AF 77.3 117.2 6.2 69 0.69 0.05 b
PT20 �51.87 �69.42 30.3 �37.6 6 5/10 8.7 79 AF X 51.5 339.9 6.2 155
PT21 �51.94 �69.57 352.2 �73 10 7/10 2.7 513 AF 82 140.7 4.6 175 0.32 0.02 b
PT22 �51.94 �69.60 342 �65.7 10 7/9 3.9 244 AF 78 211.3 5.6 116 0.165 0.046 a
PT23 �51.91 �69.64 295.8 �81.8 0 7/10 4.5 184 AF 56.4 136.7 8.4 53 0.23 0.02 b
PT24 �51.98 �69.73 351.6 �57.8 9 9/10 4.4 140 AF 75.7 263.4 5.1 102
PT25 �51.87 �69.39 43.2 �51.7 0 3/10 8.2 226 AF X 53.4 5.7 8.7 201
PT26 �51.88 �69.19 18.1 �73.3 10 10/10 3.7 174 AF 77.4 63.5 6.4 58 0.31 0.03 b
PT27 �51.87 �69.17 10.4 �72 11 11/11 3.6 163 AF 81.8 66.2 5.8 62 0.31 0.03 b
PT28 �51.84 �69.40 – – 10 0/10 – – AF X – –
PT29 �51.99 �69.85 350.7 �63.6 10 6/10 5 179 AF X 80.9 242.7 7.2 87 0.665 0.168 a
PT30 �50.55 �71.65 317.8 �75.8 9 8/10 2.8 386 Th 64.4 152.5 4.7 142
PT31 �50.52 �71.70 – – 10 0/10 – – AF 15.42 0.17 a
PT32 �50.52 �71.70 180.4 63.1 10 10/10 2.1 512 Th �84.1 111 3 253 15.41 0.16 a
PT33 �50.52 �71.70 49.2 49.1 10 10/10 4.6 113 Th �1.6 329.3 5.8 69
PT34 �50.53 �71.61 297.9 �77.6 10 6/10 9.7 49 AF 56.3 144.6 15.2 20
PT35 * �50.32 �71.22 44.2 �70.6 10 6/10 4.5 221 Th 63.5 46.3 7.2 87
PT36 U �50.32 �71.22 24.8 �63.7 9 8/10 2.9 366 Th 72.8 12.1 4.2 179
PT37 L �50.32 �71.21 11.7 �66.5 10 6/10 5.9 131 AF 82.7 15.2 8.9 58 3.02 0.04 a
PT38 �50.34 �71.23 34.5 �65.4 5 6/9 6.9 95 AF X 67.5 25.2 10.7 40
PT39 L �50.33 �71.07 8.2 �74.2 10 7/10 3.4 312 AF 78.7 88.3 5.9 107
PT40 U �50.34 �71.07 6.3 �79.2 10 9/10 4.6 126 AF 71.1 102.7 8.4 39
PT41 U �50.29 �71.13 38.4 �72.5 0 6/11 2.2 912 Th 66.7 52.5 3.7 336 2.98 0.03 a
PT42 �50.29 �71.13 27.2 �67.8 6 5/9 3.6 462 AF 72.7 31.4 5.8 174
PT43 L �50.29 �71.12 – – 1 0/9 – – AF X – –
PT44 L �49.51 �72.13 179.3 52.8 10 10/10 1.8 694 Th �73.9 105.8 2.1 554 4.08 0.12 a
PT45 �49.51 �72.13 180 58.3 10 9/10 2.9 308 Th �79.6 108.4 3.8 181
PT46 U �49.51 �72.13 184.3 56.9 10 9/10 2.3 495 Th �77.6 123.7 3.2 254
PT47 L �50.01 �71.87 345.3 �66.3 8 7/10 3 408 Th 80.4 199.6 4.3 199 3.02 0.03 a
PT48 �50.01 �71.87 352.4 �74.1 11 10/11 4.2 130 Th 78.1 126.9 7 49
PT49 U �50.01 �71.87 342.2 �67.4 10 9/10 1.5 1129 Th 79 190.2 2.2 536 3 0.04 a
PA1 �52.05 �70.02 31.9 �61.9 0 4/4 17.3 29 Th 67 10.4 26.1 13
PA2 �52.05 �70.02 26.2 �51.9 6 5/8 4 358 Th 62.9 344.3 4.7 267
PA3-6 L �52.02 �69.93 323.7 �62.0 17 13/17 2.5 271 Th 64.4 205.2 3.5 139 1.12 0.01 a
PA4-5 U �52.02 �69.93 315 �65.1 19 17/19 1.8 404 Th 61.4 192 2.5 204

a
U/L indicates the uppermost and lowermost lava flows of lava sequences; the asterisk in site 35 indicates that it is in between the following two

sites. Dec and Inc are the mean site declination and inclination; SC is the number of sun compass declinations obtained in each site; n/N is the
number of samples used for calculation of site-mean direction per number of processed samples. K is the dispersion parameter of directions (Dir) or
VGPs; a95 is the 95% confidence cone about the mean direction (Dir) or mean VGP; Th/AF represent mean direction results after thermal or AF
demagnetization; R.D. is the 40Ar/39Ar radioisotopic date obtained for some sites; U is the uncertainty range of the radioisotopic date. R is the
reference source on which a given radioisotopic date is based: (a) is this study and (b) is Meglioli [1992]. Sites PA1, PA2, PA3, PA4, PA5, and PA6
were labeled on the samples as BN1, BN2, SDL1, SDU1, SDU2, and SDL2, respectively.
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correspond to the Gauss polarity chron. The nearby

site PT38 is not discussed because paleomagnetic

results were considered unsuccessful for this site.

6.2. Pali-Aike Volcanic Field

[18] Ten of the 33 sites of this area were dated. The

radioisotopic dates that we obtained range from

9.15 Ma to 0.165 Ma. This age range is similar to

that indicated by previous radiometric dates (Mercer,

1976; Meglioli, 1992 and Singer et al., in press) in

this volcanic field (Figure 1). The radioisotopic age

obtained for site PT11 was checked and confirmed

by a second measurement using whole rock material

(Table 1). The initial result was preferred for being

more precise and the product of a measurement of

groundmass material. Site PT24 corresponds to a

lava flow that has not been covered by soil that

according to Skewes and Stern [1979] represents

the most recent volcanic activity in the Pali-Aike

volcanic field that took place 5000 to 10000 yr B.P.,

based on anthropologic studies [Bird, 1938]. In all

but one case the magnetic polarities that we

obtained for the dated lava flows were in agreement

with those expected from their ages, according to

the magnetic polarity timescale [Cande and Kent,

1995]. Despite its lack of coincidence with the

magnetic polarity timescale, the normal polarity of

site PA3-6 (isochron age of 1.12 ± 0.01 Ma) does

coincide with the Punaruu Event [Singer et al.,

1999] with a recalculated age of 1.12 ± 0.01 Ma

[Singer et al., 2002].

[19] The northern part of the Pali-Aike volcanic

field, along Gallegos river has two flows with

radioisotopic dates �8.67 Ma (PT6 and PT11) that

Figure 3. Equal area projection of site mean directions. The figure shows site mean directions of sites thought to be
Plio-Pleistocene in age (circles) and of Miocene or unconstrained ages (squares). Magnetic vectors pointing up and
down are represented by shaded and unshaded areas, respectively; crossed sites are rejected sites because of the
quality of the paleomagnetic data. The IGRF (blue triangle) is plotted as a reference point.
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occupy relatively high elevations and are remnants

of old lava flows. Similar ages were obtained by

Meglioli [1992] around 80 km west of these sites

(Figure 1). These two flows were excluded for the

calculation of mean directions or mean VGPs in

order to focus the analysis on Pliocene-Pleistocene

lava flows. All the other sites that were dated in the

Pali-Aike volcanic field are less than 1.79 Ma. The

remaining sites that were not dated in this volcanic

field were considered for paleomagnetic analysis.

A Pliocene-Pleistocene age was assumed for some

of the undated flows by (1) inferring a similar age

of that of a dated flow within the same lava

sequence (such is the case of flows PT15 and

PT16 that are assumed to have a similar age of

flow PT14); (2) inferring a young age when the

sampled lava correspond to a volcanic structure

(such is the case of flow PT3, PT10, PT20 and

PT25), and (3) inferring a similar age of a previ-

ously obtained nearby radioisotopic date (Figure 1)

like in the case of the flows related to cinder cones

that crop out roughly along Rio Chico (sites PT21,

PT23, PT26 and PT27). A relationship of sites PT5

and PT19 with previous nearby radiometric dates

of 2.1 Ma and 0.69 Ma, respectively [Meglioli,

1992] is more difficult to determine due to the

relative greater distance and the complex strati-

graphic relations of the lava flows in the area. The

previously mentioned two flows along with the

undated flows PT4, PT8 and PT12 were considered

for calculation of mean directions and mean VGPs,

despite that there is some possibility that these

flows are older than Pliocene in age.

7. Results

[20] No attempt was made to filter the data of serial

correlation in lava sequences, considering the con-

tention of Love [2000] that this procedure can be

inadequate due to the possibility of slow secular

Figure 4. Paleomagnetic results expressed in VGPs. Magnetic vectors pointing up and down are represented by
shaded and unshaded areas respectively. (a) Site-mean VGPs and (b) Mean VGP from selected group of sites
(square), normal sites (filled diamond) and reversed sites (empty diamond). Triangle indicates the position of the
geomagnetic North Pole.
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variation of the magnetic field rather than fast

accumulation rate of lava flows. However, the only

flows in lava sequences that have overlapping

circles of confidence are flows PT45-PT46,

PT39-PT40 and PA3-6 - PA4-5.

[21] Table 3 summarizes mean directions and mean

VGPs among groups of sites calculated using the

statistical methods of Fisher [1953]. According to

the selection criteria previously described we

obtained 38 successful paleomagnetic results out

Figure 5. Examples of selected age spectra and isochrons.

Table 3. Statistical Data Among Groups of Sitesa

Group of Sites Dec Inc N
a95

Dir
K
Dir

Fish
Dir

VGP
a95

VGP
K

VGP
Fish
VGP O.G. O.A. St Sb Su SlLong Lat

Selected 358.7 �68.2 33 3.5 51 yes 141.3 88.5 5.4 22 yes yes yes 17.3 17.1 20.6 14.6
Selected + rejected 3.3 �67.3 41 3.6 40 yes 24.5 88.2 5.3 19 yes yes yes 18.9 18.6 21.9 16.6
Normal 359.3 �70.6 22 4.3 53 yes 113.8 85.5 6.8 22 yes yes yes 18.2 18.0 22.6 14.9
Reverse 177.7 63.4 11 6.1 57 yes 91.3 �84.6 8.7 28 yes yes yes 16.3 16.1 22.4 12.6

a
Abbreviations for columns Dec, Inc, a95 Dir, K Dir, VGP Long, VGP Lat, a95 VGP, and K VGP are as in Table 1. Fish Dir/Fish VGP indicate

whether the distribution of the directional/VGP data is fisherian. O.G./O.A indicate whether the 95% confidence limits (a95) of the mean direction/
mean VGP overlap the GAD/Earth’s rotation axis, respectively. Data of VGP scatter relative to the Earth’s axis of rotation is given in columns St
(total scatter), Sb (scatter corrected for within-site scatter), Su (upper 95% confidence limit of the scatter), and Sl (lower 95% confidence limit of the
scatter).
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of the 53 sites that were studied. Excluding the

sites that had Miocene ages or were likely to have

that age, we calculated mean directions among 33

sites. The mean direction (D = 358.7�, I = �68.2�,
a95 = 3.5�) and mean VGP (Lat = 88.5�, Long =

141.3�, a95 = 5.4�) among the selected group of

sites coincide at the 95% confidence level with the

expected direction of the geocentric axial dipole

(GAD) (±68.1�) and axis of rotation respectively

(Figures 4b and 6a and Table 3). Likewise the

mean direction and mean VGPs among the normal,

reverse and all the results (without consideration of

selection criteria, N = 41) coincide at the 95%

confidence level with the GAD and axis of rotation

respectively (Figures 4b and 6a and Table 3). The

normal and reversed groups of sites pass the

reversal test [McFadden and McElhinny, 1990]

with a ‘‘B’’ classification. The VGP scatter with

respect to the Earth’s axis of rotation (traditionally

used as indicative of secular variation, Table 3) that

we obtained from the selected group of results is

17.1� (within-site scatter considered [e.g., Johnson

and Constable, 1996]) with upper and lower 95%

confidence limits of 20.6� and 14.6� [Cox, 1969].

This value is in close agreement with that predicted

by Model G (McFadden et al., 1988) of 17.4�
(with upper and lower confidence limits of 19.3�
and 15.6�) for that latitude. Scatter values from

high latitudes compatible with those expected from

model G have been also recently obtained

from lavas younger than 5 Ma of British Columbia

[Mejia et al., 2002], Deception Island [Baraldo et

al., 2003], and Possession Island [Camps et al.,

2001]. However, this has not been the case in the

recent study from Patagonia (around 47�S) by

Brown et al. [2004] in which scatter is substantially

higher than that expected from Model G.

[22] The IGRF of the year 2000 for the studied

area is Dec = 13.5� and Inc = �48.1� and the GAD

Figure 6. Equal area projection of mean directions from several groups of sites. (a) Comparison of the mean
direction of the selected group of sites (shaded square) and the selected plus rejected group of sites (empty square)
with the GAD (triangle pointing down). (b) Comparison of the mean direction from normal (gray-filled diamond) and
reverse (empty diamond) data with the GAD (triangle pointing down) and ranges of inclination and declination in the
area of study (shaded quadrilaterals) as modeled by Johnson and Constable [1995].
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for this same area is Dec = 0�, Inc = �68.1�.
Therefore the present inclination anomaly in the

area is 20�. Such anomaly reflects the pronounced

non-dipole structure of the present field in South

America. The present inclination anomaly in the

area of study is greater than the inclination

anomaly of any of our sites that passed the

selection criteria (Figure 3). This observation

suggests that the present inclination anomaly is

among the greatest that has occurred in the area at

least during non-transitional states of the magnetic

field.

[23] The mean directions of the normal and re-

verse data of this study were compared to ranges

of directions corresponding to the declination and

inclination anomalies (obtained mean values

minus those expected from GAD) resulting from

the TAF models (Figure 6b) obtained by JC95 for

the past 5 Ma, that are based on normal (LN1

model) and reverse (LR1 model) data sets derived

from lava flows [Johnson and Constable, 1996].

The agreement between the values modeled by

JC95 for the Patagonia area and our results

(Figure 6b) is facilitated by large 95% confidence

ranges among our normal and reverse mean direc-

tions. However, the departure from the more ubiq-

uitous negative and positive inclination anomalies

(for normal and reverse data respectively) depicted

in the TAF models of JC95 is not clearly observed

in our data set. Only the inclination anomaly of

�4.7� (63.4�–68.1�) that we obtained from the

reverse sites closely agrees with the �4� to �6�
inclination anomaly range obtained for the Pata-

gonia area by JC95. But at the same time, the

declination anomaly of this same group of sites of

DD = �2.3� (177.7�–180�) is quite distant from

the range of �10� to �12� of the model. Detecting

true departures from negative and positive inclina-

tion anomalies (for normal and reverse data re-

spectively) would be important, because they

would represent a contribution opposite to the

axial quadrupole term (that causes the so-called

far-sided effect seen in VGP plots [e.g., Wilson,

1970]) that is nevertheless expected to be small

close to ±55� latitudes such as in this study. Such

axial quadrupole term (g2
0) contribution becomes

zero at these latitudes because of the shape of the

wave of the Legendre polynomials of this spherical

harmonic term (Figure 7).

8. Conclusions

[24] This paper presents high quality paleomagnetic

results accompanied by precise new 40Ar/39Ar geo-

chronology from Pliocene-Pleistocene lavas from

southern Patagonia. The fact that many rejected

results coincide with greater departures from the

GAD direction suggests that the selection criteria is

adequate and highlights the need to apply stringent

laboratory and data processing techniques such as

those applied by Tauxe et al. [2000]. The mean

direction and mean VGP presented closely follow

and are consistent at the 95% confidence level with

the GAD and axis of rotation respectively. Although

the mean normal and mean reverse data sets pre-

sented indicate inclination and declination anoma-

lies that are consistent at the 95% confidence level

with those corresponding to the Patagonia area

modeled by Johnson and Constable [1995], the

departure from the far-sided effect indicated by

those models is not suggested by our results. Rather,

the overlap between our results and the modeled

values occurs within a wide 95% confidence limit.

Therefore the data presented do not reveal the

presence of persistent non-dipole structures of the

paleomagnetic field.

Figure 7. Form of the axial-quadrupole spherical
harmonic term (g2

0). The contribution of this term,
modulated entirely by the Legendre function, is 0 at
±55� latitude.
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