686 research outputs found
On Urabe's criteria of isochronicity
We give a short proof of Urabe's criteria for the isochronicity of periodical
solutions of the equation . We show that apart from the
harmonic oscillator there exists a large family of isochronous potentials which
must all be non-polynomial and not symmetric (an even function of the
coordinate x).Comment: 8 page
Fluctuation of chemical compositions of the phase-separated hydrothermal fluid from the North Fiji Basin ridge
Bubbles, clusters and denaturation in genomic DNA: modeling, parametrization, efficient computation
The paper uses mesoscopic, non-linear lattice dynamics based
(Peyrard-Bishop-Dauxois, PBD) modeling to describe thermal properties of DNA
below and near the denaturation temperature. Computationally efficient notation
is introduced for the relevant statistical mechanics. Computed melting profiles
of long and short heterogeneous sequences are presented, using a recently
introduced reparametrization of the PBD model, and critically discussed. The
statistics of extended open bubbles and bound clusters is formulated and
results are presented for selected examples.Comment: to appear in a special issue of the Journal of Nonlinear Mathematical
Physics (ed. G. Gaeta
Le cadre géologique d'un site hydrothermal actif : la campagne STARMER 1 du submersible Nautile dans le Bassin Nord-Fidjien
International audienc
In situ geological and geochemical study of an active hydrothermal site on the North Fiji basin ridge
International audienc
Distribution-based bisimulation for labelled Markov processes
In this paper we propose a (sub)distribution-based bisimulation for labelled
Markov processes and compare it with earlier definitions of state and event
bisimulation, which both only compare states. In contrast to those state-based
bisimulations, our distribution bisimulation is weaker, but corresponds more
closely to linear properties. We construct a logic and a metric to describe our
distribution bisimulation and discuss linearity, continuity and compositional
properties.Comment: Accepted by FORMATS 201
Destabilization of dark states and optical spectroscopy in Zeeman-degenerate atomic systems
We present a general discussion of the techniques of destabilizing dark
states in laser-driven atoms with either a magnetic field or modulated laser
polarization. We show that the photon scattering rate is maximized at a
particular evolution rate of the dark state. We also find that the atomic
resonance curve is significantly broadened when the evolution rate is far from
this optimum value. These results are illustrated with detailed examples of
destabilizing dark states in some commonly-trapped ions and supported by
insights derived from numerical calculations and simple theoretical models.Comment: 14 pages, 10 figure
Open Problems on Central Simple Algebras
We provide a survey of past research and a list of open problems regarding
central simple algebras and the Brauer group over a field, intended both for
experts and for beginners.Comment: v2 has some small revisions to the text. Some items are re-numbered,
compared to v
Heteroepitaxy of and on GaAs (111)A by Atomic Layer Deposition: Achieving Low Interface Trap Density
GaAs metal–oxide–semiconductor devices historically suffer from Fermi-level pinning, which is mainly due to the high trap density of states at the oxide/GaAs interface. In this work, we present a new way of passivating the interface trap states by growing an epitaxial layer of high-k dielectric oxide, , on GaAs(111)A. High-quality epitaxial thin films are achieved by an ex situ atomic layer deposition (ALD) process, and GaAs MOS capacitors made from this epitaxial structure show very good interface quality with small frequency dispersion and low interface trap densities . In particular, the /GaAs interface, which has a lattice mismatch of only 0.04%, shows very low in the GaAs bandgap, below near the conduction band edge. The /GaAs capacitors also show the lowest frequency dispersion of any dielectric on GaAs. This is the first achievement of such low trap densities for oxides on GaAs.Chemistry and Chemical Biolog
Water Dynamics at Protein Interfaces: Ultrafast Optical Kerr Effect Study
The behavior of water molecules surrounding a protein can have an important bearing on its structure and function. Consequently, a great deal of attention has been focused on changes in the relaxation dynamics of water when it is located at the protein surface. Here we use the ultrafast optical Kerr effect to study the H-bond structure and dynamics of aqueous solutions of proteins. Measurements are made for three proteins as a function of concentration. We find that the water dynamics in the first solvation layer of the proteins are slowed by up to a factor of 8 in comparison to those in bulk water. The most marked slowdown was observed for the most hydrophilic protein studied, bovine serum albumin, whereas the most hydrophobic protein, trypsin, had a slightly smaller effect. The terahertz Raman spectra of these protein solutions resemble those of pure water up to 5 wt % of protein, above which a new feature appears at 80 cm–1, which is assigned to a bending of the protein amide chain
- …
