98 research outputs found

    Utjecaj hijaluronske kiseline, kalcijeva hidroksida i dentinskih adheziva na odontoblaste i fibroblaste štakora

    Get PDF
    The aim of this study was to investigate the effects and efficiency of pulp capping preparations based on hyaluronic acid, calcium hydroxide, and dentin adhesive on the pulp tissue of Sprague-Dawley rats. The rats were killed and extracted teeth sectioned transversely through the pulp. The slices were placed in a RPMI 1640 cell culture medium supplemented with 10 % foetal calf serum. During 14 days of cultivation cultures were treated with preparations that contained hyaluronic acid (Gengigel Prof®), and calcium hydroxide (ApexCal®), or with dentin adhesive (Excite®). Cellularity and viability of fibroblasts and odontoblasts was analysed using a haemocytometer. Hyaluronic acid proved most efficient and the least toxic for direct pulp capping. Even though calcium hydroxide and dentin adhesive demonstrated a higher degree of cytotoxicity, their effects were still acceptable in terms of biocompatibility.Cilj ovog rada bio je istražiti djelovanje preparata na bazi hijaluronske kiseline i kalcijeva hidroksida te dentinskog adheziva na pulpno tkivo Sprague-Dawley štakora u svrhu procjene učinkovitosti navedenih materijala kod direktnog prekrivanja pulpe. Izvađeni zubi transverzalno su podijeljeni kroz pulpu. Naresci su uzgajani u RPMI 1640 staničnom mediju obogaćenom s 10 % fetalnoga telećeg seruma u plastičnim bočicama za staničnu kulturu. Kulture su tijekom 14 dana tretirane preparatima s hijaluronskom kiselinom (Gengigel Prof®), kalcijevim hidroksidom (ApexCal®) i dentinskim adhezivom (Excite®). Nakon 14 dana pristupilo se analizi staničnosti i vijabilnosti s pomoću hemocitometra. Iako su preparati na bazi kalcijeva hidroksida i dentinski adheziv pokazali nešto viši stupanj citotoksičnosti, dobiveni su rezultati u granicama biokompatibilnosti. Primjena preparata na bazi hijaluronske kiseline postigla je najbolje rezultate te se ovaj materijal pokazao najboljim za direktno prekrivanje pulpe između tri ispitivana preparata

    Gene-enhanced tissue engineering for dental hard tissue regeneration: (2) dentin-pulp and periodontal regeneration

    Get PDF
    Potential applications for gene-based tissue engineering therapies in the oral and maxillofacial complex include the delivery of growth factors for periodontal regeneration, pulp capping/dentin regeneration, and bone grafting of large osseous defects in dental and craniofacial reconstruction. Part 1 reviewed the principals of gene-enhanced tissue engineering and the techniques of introducing DNA into cells. This manuscript will review recent advances in gene-based therapies for dental hard tissue regeneration, specifically as it pertains to dentin regeneration/pulp capping and periodontal regeneration

    A New Method to Extract Dental Pulp DNA: Application to Universal Detection of Bacteria

    Get PDF
    BACKGROUND: Dental pulp is used for PCR-based detection of DNA derived from host and bacteremic microorganims. Current protocols require odontology expertise for proper recovery of the dental pulp. Dental pulp specimen exposed to laboratory environment yields contaminants detected using universal 16S rDNA-based detection of bacteria. METHODOLOGY/PRINCIPAL FINDINGS: We developed a new protocol by encasing decontaminated tooth into sterile resin, extracting DNA into the dental pulp chamber itself and decontaminating PCR reagents by filtration and double restriction enzyme digestion. Application to 16S rDNA-based detection of bacteria in 144 teeth collected in 86 healthy people yielded a unique sequence in only 14 teeth (9.7%) from 12 individuals (14%). Each individual yielded a unique 16S rDNA sequence in 1-2 teeth per individual. Negative controls remained negative. Bacterial identifications were all confirmed by amplification and sequencing of specific rpoB sequence. CONCLUSIONS/SIGNIFICANCE: The new protocol prevented laboratory contamination of the dental pulp. It allowed the detection of bacteria responsible for dental pulp colonization from blood and periodontal tissue. Only 10% such samples contained 16S rDNA. It provides a new tool for the retrospective diagnostic of bacteremia by allowing the universal detection of bacterial DNA in animal and human, contemporary or ancient tooth. It could be further applied to identification of host DNA in forensic medicine and anthropology

    Dental pulp tissue engineering

    Get PDF
    Dental pulp is a highly specialized mesenchymal tissue, which have a restrict regeneration capacity due to anatomical arrangement and post-mitotic nature of odontoblastic cells. Entire pulp amputation followed by pulp-space disinfection and filling with an artificial material cause loss of a significant amount of dentin leaving as life-lasting sequelae a non-vital and weakened tooth. However, regenerative endodontics is an emerging field of modern tissue engineering that demonstrated promising results using stem cells associated with scaffolds and responsive molecules. Thereby, this article will review the most recent endeavors to regenerate pulp tissue based on tissue engineering principles and providing insightful information to readers about the different aspects enrolled in tissue engineering. Here, we speculate that the search for the ideal combination of cells, scaffolds, and morphogenic factors for dental pulp tissue engineering may be extended over future years and result in significant advances in other areas of dental and craniofacial research. The finds collected in our review showed that we are now at a stage in which engineering a complex tissue, such as the dental pulp, is no longer an unachievable and the next decade will certainly be an exciting time for dental and craniofacial research

    Hyaluronic acid hydrogels incorporating platelet lysate enhance human pulp cell proliferation and differentiation

    Get PDF
    The restoration of dentine-pulp complex remains a challenge for dentists; nonetheless, it has been poorly addressed. An ideal system should modulate the host response, as well as enable the recruitment, proliferation and differentiation of relevant progenitor cells. Herein was proposed a photocrosslinkable hydrogel system based on hyaluronic acid (HA) and platelet lysate (PL). PL is a cocktail of growth factors (GFs) and cytokines involved in wound healing orchestration, obtained by the cryogenic processing of platelet concentrates, and was expected to provide the HA hydrogels specific biochemical cues to enhance pulp cellsâ recruitment, proliferation and differentiation. Stable HA hydrogels incorporating PL (HAPL) were prepared after photocrosslinking of methacrylated HA (Met-HA) previously dissolved in PL, triggered by the Ultra Violet activated photoinitiator Irgacure 2959. Both the HAPL and plain HA hydrogels were shown to be able to recruit cells from a cell monolayer of human dental pulp stem cells (hDPSCs) isolated from permanent teeth. The hDPCs were also seeded directly over the hydrogels (5 Ã 104 cells/hydrogel) and cultured in osteogenic conditions. Cell metabolism and DNA quantification were higher, in all time-points, for PL supplemented hydrogels (p < 0,05). Alkaline phosphatase (ALPL) activity and calcium quantification peaks were observed for the HAPL group at 21 days (p < 0,05). The gene expression for ALPL and COLIA1 was up-regulated at 21 days to HAPL, compared with HA group (p < 0,05). Within the same time point, the gene expression for RUNX2 did not differ between the groups. Overall, data demonstrated that the HA hydrogels incorporating PL increased the cellular metabolism and stimulate the mineralized matrix deposition by hDPSCs, providing clear evidence of the potential of the proposed system for the repair of damaged pulp/dentin tissue and endodontics regeneration.LFDA acknowledges Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for the grant 2014/12017-8. Portuguese Foundation for Science and Technology (FCT) for PSB PhD grant SFRH/BD/73403/2010, MTR post-doctoral grant (SFRH/BPD/111729/2015), MEG grant (IF/00685/2012), and RECOGNIZE project (UTAP-ICDT/CTM-BIO/0023/2014), RL3-TECT - NORTE-07-0124-FEDER-000020 project co-financed by ON.2 (NSRF) through ERD. This study also received financial support from FCT/Ministério da Ciência, Tecnologia, e Ensino Superior (FCT/MCTES) and Fundo Social Europeu through Programa Operacional do Capital Humano (FSE/POCH) PD/59/2013 for the LA ICVS-3Bs (UID/Multi/50026/2013). The authors would like to thank Maurizio Gulino, for its support in the in vitro experiments and Maló Clinic, Porto, Dra Ana Ferro and Dr Bruno Queridinha for the donation of permanent teethinfo:eu-repo/semantics/publishedVersio
    corecore