38 research outputs found
Drug Absorption Modeling as a Tool to Define the Strategy in Clinical Formulation Development
The purpose of this mini review is to discuss the use of physiologically-based drug absorption modeling to guide the formulation development. Following an introduction to drug absorption modeling, this article focuses on the preclinical formulation development. Case studies are presented, where the emphasis is not only the prediction of absolute exposure values, but also their change with altered input values. Sensitivity analysis of technologically relevant parameters, like the drug’s particle size, dose and solubility, is presented as the basis to define the clinical formulation strategy. Taking the concept even one step further, the article shows how the entire design space for drug absorption can be constructed. This most accurate prediction level is mainly foreseen once clinical data is available and an example is provided using mefenamic acid as a model drug. Physiologically-based modeling is expected to be more often used by formulators in the future. It has the potential to become an indispensable tool to guide the formulation development of challenging drugs, which will help minimize both risks and costs of formulation development
Automated Non-Sterile Pharmacy Compounding: A Multi-Site Study in European Hospital and Community Pharmacies with Pediatric Immediate Release Propranolol Hydrochloride Tablets.
Pharmacy compounding, the art and science of preparing customized medications to meet individual patient needs, is on the verge of transformation. Traditional methods of compounding often involve manual and time-consuming processes, presenting challenges in terms of consistency, dosage accuracy, quality control, contamination, and scalability. However, the emergence of cutting-edge technologies has paved a way for a new era for pharmacy compounding, promising to redefine the way medications are prepared and delivered as pharmacy-tailored personalized medicines. In this multi-site study, more than 30 hospitals and community pharmacies from eight countries in Europe utilized a novel automated dosing approach inspired by 3D printing for the compounding of non-sterile propranolol hydrochloride tablets. CuraBlend <sup>®</sup> excipient base, a GMP-manufactured excipient base (pharma-ink) intended for automated compounding applications, was used. A standardized study protocol to test the automated dosing of tablets with variable weights was performed in all participating pharmacies in four different iterative phases. Integrated quality control was performed with an in-process scale and NIR spectroscopy supported by HPLC content uniformity measurements. In total, 6088 propranolol tablets were produced at different locations during this study. It was shown that the dosing accuracy of the process increased from about 90% to 100% from Phase 1 to Phase 4 by making improvements to the formulation and the hardware solutions. The results indicate that through this automated and quality controlled compounding approach, extemporaneous pharmacy manufacturing can take a giant leap forward towards automation and digital manufacture of dosage forms in hospital pharmacies and compounding pharmacies
