36 research outputs found

    Mesude

    Get PDF
    Vecihi'nin İkdam'da tefrika edilen Mesude adlı romanıArşivdeki eksikler nedeniyle romanın tam metni verilememiştir. Bkz. "Tefrika bilgi formu

    Adversarial attacks and adversarial robustness in computational pathology.

    Get PDF
    Artificial Intelligence (AI) can support diagnostic workflows in oncology by aiding diagnosis and providing biomarkers directly from routine pathology slides. However, AI applications are vulnerable to adversarial attacks. Hence, it is essential to quantify and mitigate this risk before widespread clinical use. Here, we show that convolutional neural networks (CNNs) are highly susceptible to white- and black-box adversarial attacks in clinically relevant weakly-supervised classification tasks. Adversarially robust training and dual batch normalization (DBN) are possible mitigation strategies but require precise knowledge of the type of attack used in the inference. We demonstrate that vision transformers (ViTs) perform equally well compared to CNNs at baseline, but are orders of magnitude more robust to white- and black-box attacks. At a mechanistic level, we show that this is associated with a more robust latent representation of clinically relevant categories in ViTs compared to CNNs. Our results are in line with previous theoretical studies and provide empirical evidence that ViTs are robust learners in computational pathology. This implies that large-scale rollout of AI models in computational pathology should rely on ViTs rather than CNN-based classifiers to provide inherent protection against perturbation of the input data, especially adversarial attacks

    Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology.

    Get PDF
    Artificial intelligence (AI) can extract visual information from histopathological slides and yield biological insight and clinical biomarkers. Whole slide images are cut into thousands of tiles and classification problems are often weakly-supervised: the ground truth is only known for the slide, not for every single tile. In classical weakly-supervised analysis pipelines, all tiles inherit the slide label while in multiple-instance learning (MIL), only bags of tiles inherit the label. However, it is still unclear how these widely used but markedly different approaches perform relative to each other. We implemented and systematically compared six methods in six clinically relevant end-to-end prediction tasks using data from N=2980 patients for training with rigorous external validation. We tested three classical weakly-supervised approaches with convolutional neural networks and vision transformers (ViT) and three MIL-based approaches with and without an additional attention module. Our results empirically demonstrate that histological tumor subtyping of renal cell carcinoma is an easy task in which all approaches achieve an area under the receiver operating curve (AUROC) of above 0.9. In contrast, we report significant performance differences for clinically relevant tasks of mutation prediction in colorectal, gastric, and bladder cancer. In these mutation prediction tasks, classical weakly-supervised workflows outperformed MIL-based weakly-supervised methods for mutation prediction, which is surprising given their simplicity. This shows that new end-to-end image analysis pipelines in computational pathology should be compared to classical weakly-supervised methods. Also, these findings motivate the development of new methods which combine the elegant assumptions of MIL with the empirically observed higher performance of classical weakly-supervised approaches. We make all source codes publicly available at https://github.com/KatherLab/HIA, allowing easy application of all methods to any similar task

    Encrypted federated learning for secure decentralized collaboration in cancer image analysis.

    Get PDF
    Artificial intelligence (AI) has a multitude of applications in cancer research and oncology. However, the training of AI systems is impeded by the limited availability of large datasets due to data protection requirements and other regulatory obstacles. Federated and swarm learning represent possible solutions to this problem by collaboratively training AI models while avoiding data transfer. However, in these decentralized methods, weight updates are still transferred to the aggregation server for merging the models. This leaves the possibility for a breach of data privacy, for example by model inversion or membership inference attacks by untrusted servers. Somewhat-homomorphically-encrypted federated learning (SHEFL) is a solution to this problem because only encrypted weights are transferred, and model updates are performed in the encrypted space. Here, we demonstrate the first successful implementation of SHEFL in a range of clinically relevant tasks in cancer image analysis on multicentric datasets in radiology and histopathology. We show that SHEFL enables the training of AI models which outperform locally trained models and perform on par with models which are centrally trained. In the future, SHEFL can enable multiple institutions to co-train AI models without forsaking data governance and without ever transmitting any decryptable data to untrusted servers

    Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: A retrospective multi-centric study

    Get PDF
    Deep learning (DL) can predict microsatellite instability (MSI) from routine histopathology slides of colorectal cancer (CRC). However, it is unclear whether DL can also predict other biomarkers with high performance and whether DL predictions generalize to external patient populations. Here, we acquire CRC tissue samples from two large multi-centric studies. We systematically compare six different state-of-the-art DL architectures to predict biomarkers from pathology slides, including MSI and mutations in BRAF, KRAS, NRAS, and PIK3CA. Using a large external validation cohort to provide a realistic evaluation setting, we show that models using self-supervised, attention-based multiple-instance learning consistently outperform previous approaches while offering explainable visualizations of the indicative regions and morphologies. While the prediction of MSI and BRAF mutations reaches a clinical-grade performance, mutation prediction of PIK3CA, KRAS, and NRAS was clinically insufficient

    Swarm learning for decentralized artificial intelligence in cancer histopathology

    Get PDF
    Artificial intelligence (AI) can predict the presence of molecular alterations directly from routine histopathology slides. However, training robust AI systems requires large datasets for which data collection faces practical, ethical and legal obstacles. These obstacles could be overcome with swarm learning (SL), in which partners jointly train AI models while avoiding data transfer and monopolistic data governance. Here, we demonstrate the successful use of SL in large, multicentric datasets of gigapixel histopathology images from over 5,000 patients. We show that AI models trained using SL can predict BRAF mutational status and microsatellite instability directly from hematoxylin and eosin (H&E)-stained pathology slides of colorectal cancer. We trained AI models on three patient cohorts from Northern Ireland, Germany and the United States, and validated the prediction performance in two independent datasets from the United Kingdom. Our data show that SL-trained AI models outperform most locally trained models, and perform on par with models that are trained on the merged datasets. In addition, we show that SL-based AI models are data efficient. In the future, SL can be used to train distributed AI models for any histopathology image analysis task, eliminating the need for data transfer

    Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study.

    Get PDF
    Deep learning (DL) can accelerate the prediction of prognostic biomarkers from routine pathology slides in colorectal cancer (CRC). However, current approaches rely on convolutional neural networks (CNNs) and have mostly been validated on small patient cohorts. Here, we develop a new transformer-based pipeline for end-to-end biomarker prediction from pathology slides by combining a pre-trained transformer encoder with a transformer network for patch aggregation. Our transformer-based approach substantially improves the performance, generalizability, data efficiency, and interpretability as compared with current state-of-the-art algorithms. After training and evaluating on a large multicenter cohort of over 13,000 patients from 16 colorectal cancer cohorts, we achieve a sensitivity of 0.99 with a negative predictive value of over 0.99 for prediction of microsatellite instability (MSI) on surgical resection specimens. We demonstrate that resection specimen-only training reaches clinical-grade performance on endoscopic biopsy tissue, solving a long-standing diagnostic problem

    Quantitative OCT and MRI biomarkers for the differentiation of cartilage degeneration

    No full text
    Objective To evaluate the usefulness of quantitative parameters obtained by optical coherence tomography (OCT) and magnetic resonance imaging (MRI) in the comprehensive assessment of human articular cartilage degeneration. Materials and methods Human osteochondral samples of variable degeneration (n  = 45) were obtained from total knee replacements and assessed by MRI sequences measuring T1, T1ρ, T2 and T2* relaxivity and by OCT-based quantification of irregularity (OII, optical irregularity index), homogeneity (OHI, optical homogeneity index]) and attenuation (OAI, optical attenuation index]). Samples were also assessed macroscopically (Outerbridge classification) and histologically (Mankin classification) as grade-0 (Mankin scores 0–4)/grade-I (scores 5–8)/grade-II (scores 9–10)/grade-III (score 11–14). After data normalisation, differences between Mankin grades and correlations between imaging parameters were assessed using ANOVA and Tukey’s post-hoc test and Spearman’s correlation coefficients, respectively. Sensitivities and specificities in the detection of Mankin grade-0 were calculated. Results Significant degeneration-related increases were found for T2 and OII and decreases for OAI, while T1, T1ρ, T2* or OHI did not reveal significant changes in relation to degeneration. A number of significant correlations between imaging parameters and histological (sub)scores were found, in particular for T2 and OII. Sensitivities and specificities in the detection of Mankin grade-0 were highest for OHI/T1 and OII/T1ρ, respectively. Conclusion Quantitative OCT and MRI techniques seem to complement each other in the comprehensive assessment of cartilage degeneration. Sufficiently large structural and compositional changes in the extracellular matrix may thus be parameterized and quantified, while the detection of early degeneration remains challenging
    corecore