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a b s t r a c t 

Artificial intelligence (AI) can extract visual information from histopathological slides and yield biological 

insight and clinical biomarkers. Whole slide images are cut into thousands of tiles and classification prob- 

lems are often weakly-supervised: the ground truth is only known for the slide, not for every single tile. 

In classical weakly-supervised analysis pipelines, all tiles inherit the slide label while in multiple-instance 

learning (MIL), only bags of tiles inherit the label. However, it is still unclear how these widely used but 

markedly different approaches perform relative to each other. 

We implemented and systematically compared six methods in six clinically relevant end-to-end pre- 

diction tasks using data from N = 2980 patients for training with rigorous external validation. We tested 

three classical weakly-supervised approaches with convolutional neural networks and vision transformers 

(ViT) and three MIL-based approaches with and without an additional attention module. Our results em- 

pirically demonstrate that histological tumor subtyping of renal cell carcinoma is an easy task in which 

all approaches achieve an area under the receiver operating curve (AUROC) of above 0.9. In contrast, we 

report significant performance differences for clinically relevant tasks of mutation prediction in colorec- 

Abbreviations: MIL, Multiple-Instance Learning; AI, Artificial Intelligence; ViT, Vision Transformer; WSI, Whole Slide Image; AUROC, Area Under the Receiver Operating 

Characteristic Curve; H&E, Hematoxylin and Eosin; CNN, Convolutional Neural Network; EBV, Epstein-Barr virus; MSI, Microsatellite Instability. 
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he state of the art in end-to-end computational pathology 

Artificial intelligence (AI)-based image analysis is widely used 

or end-to-end classification of histopathological whole slide im- 

ges (WSI). Common applications of such end-to-end workflows 

re tumor detection ( Campanella et al., 2019 , Pinckaers et al., 

021 ), subtyping ( Lu et al., 2021 , Wang et al., 2020 , Zhu et al.,

021 ), and grading ( Bulten et al., 2020 , Shaban et al., 2020 ,

tröm et al., 2020 ). In these tasks, an image analysis pipeline reca- 

itulates, automates, and potentially improves pathologists’ assess- 

ent of WSI. However, AI has also been used to perform image 

nalysis tasks that exceed human capabilities, including prediction 

f molecular alterations ( Kather et al., 2020 ), survival ( Skrede et al.,

020 , Yamamoto et al., 2019 ), and treatment response ( Echle et al.,

020 ) directly from routine WSI. Collectively, these broad appli- 

ations of AI in WSI image analysis are termed “computational 

athology” and widespread clinical adoption is ultimately expected 

nce routine diagnostic workflows are fully digitalize ( Kather and 

alderaro, 2020 , Rony et al., 2019 ) ( Figure 1 A) . Glass slides stained

ith hematoxylin and eosin (H&E) are ubiquitously available for 

lmost every cancer patient. Hence, AI methods are expected to 

asily integrate with existing diagnostic pathways, improving out- 

omes and providing cost savings ( Kacew et al., 2021 ). 

urrent limitations: a lack of unbiased benchmarking studies 

However, a major limitation for the development, validation, 

nd commercialization of computational pathology methods is 

he lack of systematic comparison (i.e. benchmarking) of differ- 

nt technologies. While the earliest studies in 2018 employed a 

eakly-supervised approach based on a convolutional neural net- 

ork (CNN) and spatial averaging ( Coudray et al., 2018 ), recent 

tudies have proposed conceptually new technologies, including 

ultiple-instance learning ( Campanella et al., 2019 , Lu et al., 2021 , 

u et al., 2021 ) with or without attention-based aggregation func- 

ions ( Saillard et al., 2020 , Schirris et al., 2021 ). In addition, com-

utational pathology is an applied field that follows trends in basic 

omputer vision research. Thus, it can be anticipated that classi- 

al CNN architectures such as ResNets (Residual Neural network) 

ill be ultimately replaced by more powerful and efficient CNNs 

uch as EfficientNet ( Tan and Le, 2019 ) or non-convolutional AI 

pproaches such as Vision Transformers (ViT) ( Dosovitskiy et al., 

020 ). However, for academic and commercial actors in the field 

f computational pathology, choosing the best method for an end- 

o-end problem is currently not easily possible. On a conceptual 

evel, there is no systematic evidence on which methods yield the 

est performance for clinically relevant problems. This prevents re- 

earchers, pathologists, and companies from making optimal de- 

ign choices for a computational pathology application. On a prac- 

ical level, there is currently no implementation of the whole spec- 

rum of AI methods for computational pathology. 
2 
In these mutation prediction tasks, classical weakly-supervised workflows

y-supervised methods for mutation prediction, which is surprising given

at new end-to-end image analysis pipelines in computational pathology

l weakly-supervised methods. Also, these findings motivate the develop-

combine the elegant assumptions of MIL with the empirically observed

 weakly-supervised approaches. We make all source codes publicly avail-

erLab/HIA , allowing easy application of all methods to any similar task. 

© 2022 Elsevier B.V. All rights reserved. 

im of the present study 

In the present study, we systematically collected WSI datasets 

or six clinically common end-to-end prediction tasks with diag- 

ostic or therapeutic relevance. In renal cell carcinoma, we in- 

estigated the classification of morphological subtypes, which is a 

idely studied problem ( Lu et al., 2021 ). In colorectal cancer, we 

nvestigated AI-based prediction of the immunotherapy biomarker 

icrosatellite instability (MSI) ( Bilal et al., 2021 , Echle et al., 2020 ,

chle et al., 2021 , Kather et al., 2019 ) and mutations in the BRAF

ene, which is a directly targetable genetic alteration ( Bilal et al., 

021 , Kather et al., 2020 , Kopetz et al., 2019 , Schrammen et al.,

021 ). In gastric cancer, we investigated the prediction of es- 

ablished or potential biomarkers for immunotherapy MSI and 

pstein-Barr virus (EBV) positivity ( Muti et al., 2021 ). Finally, in 

ladder cancer, we investigated the prediction of FGFR3 muta- 

ional status, which is a clinically approved therapeutic target 

 Loeffler et al., 2021 ). For each of these tasks, we presented 

atasets from two different institutions, allowing us to provide a 

enchmark with external validation ( Figure 1 B-E, Suppl Figures 

-4). We aimed to be unbiased in terms of methods selection for 

his benchmark study. Therefore, we identified the most commonly 

sed image analysis approaches via a systematic review of the lit- 

rature. We included all approaches for weakly-supervised end- 

o-end slide-level classification tasks (Suppl. Figure 5) and subse- 

uently benchmarked them on the multi-tumor datasets. 

ethods 

thics statement and patient cohorts 

All experiments were conducted in accordance with the Decla- 

ation of Helsinki. For this study, we used anonymized H&E stained 

lides obtained from formalin-fixed paraffin-embedded (FFPE) ma- 

erial from the “The Cancer Genome Atlas” (TCGA) archive (avail- 

ble at https://portal.gdc.cancer.gov ), a large, multi-centric collec- 

ion of tissue specimens obtained from multiple hospitals across 

ifferent countries ( Cancer Genome Atlas Research Network, 2014a, 

ancer Genome Atlas Research Network, 2014b; Ricketts et al., 

018 ). In addition, we used four proprietary datasets: the DACHS 

tudy (“Darmkrebs: Chancen der Verhütung durch Screening”), a 

arge population-based case-control and patient cohort study on 

RC, including samples of patients with stages I-IV from differ- 

nt laboratories in southwestern Germany coordinated by the Ger- 

an Cancer Research Center (Heidelberg, Germany) ( Brenner et al., 

011 , Hoffmeister et al., 2020 , Brenner et al., 2006 ) and supported 

y the the NCT Tissue Bank at the Institute of Pathology, Univer- 

ity of Heidelberg. The DACHS study was approved by the ethics 

ommittees of the University of Heidelberg and of the Medical 

hambers of Baden-Württemberg and Rhineland-Palatinate, and 

ll participants signed an informed consent. The BERN dataset 

s a single-center dataset collected from clinical routine samples 

t the pathology archive at Inselspital, University of Bern (Bern, 

https://github.com/KatherLab/HIA
https://portal.gdc.cancer.gov
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Fig. 1. Outline of this study. A) End-to-end artificial intelligence (AI) methods in computational pathology are used to predict a range of features. B) Patient cohorts for 

renal cell carcinoma, C) for colorectal cancer, D) for gastric cancer and E) for bladder cancer. F) Country of origin of all cohorts. G) Experimental design in this study. 
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witzerland) ( Dislich et al., 2020 ). The use of this data set was ap-

roved by the local ethics commission, specifically granting the use 

f archival tissue for molecular and immunohistochemical analy- 

is as well as tissue microarray construction (University of Bern, 

witzerland, no. 200/14). The use of archival tissue from this co- 

ort for molecular analysis was approved by the local ethical com- 

ission (Technical University of Munich, No. 2136/08). Similarly, 

he AACHEN-RCC dataset and the AACHEN-BLADDER datasets orig- 

nated from a single high-volume medical center, the pathology 

rchive at RWTH Aachen University Hospital (Aachen, Germany). 

he collection of patient samples from Aachen was approved by 

he local Ethics board (AACHEN-RCC: EK315/19, AACHEN-BLADDER: 
w

3 
K455/20). All cohorts were anonymized at the time of analysis. 

uppl. Table 1 shows patient numbers and a clinico-pathological 

escription of all cohorts. 

dentification of commonly used weakly-supervised prediction 

ipelines 

We used the search term “((deep learning) AND ((digital 

istopathology) OR (whole slide)) AND (cancer))” for a struc- 

ured search of the PubMed database ( https://pubmed.gov ). To fol- 

ow the main goal of the current study, we selected the studies 

hich aimed to predict clinically relevant targets from WSIs using 

https://pubmed.gov
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Table 1 

Hyperparameters and technical details for all approaches. 

Hyperparameters and architecture Reference, technical Reference, medical 

ResNet ●Resnet-18 pre-trained on ImageNet (18 layers, the last layer 

was changed from 1000 output neurons to N output neurons 

for N classes) 

●batch size = 32 

●Maximum number of tiles = 500 

●Optimizer = Adam 

●learning rate = 1e-5 (weight decay = 1e-5) 

●Freeze ratio of layers = 0.5 (weights and biases in the first 9 

layers were not trainable, weights and biases in the last 9 

layers were trainable) 

( He et al., 2016 ) ( Fu et al., 2020 , 

Kather et al., 2020 , 

van Treeck et al., 

2021 ) 

EfficientNet ●Pre-trained on ImageNet (efficientnet-b7) 

●batch size = 32 

●Maximum number of tiles = 500 

●Optimizer = Adam 

●learning rate = 1e-4 (weight decay = 1e-5) 

●Freeze ratio of layers = 0.25 

( Tan and Le, 2021 ) ( Bengs et al., 2021 ) 

ViT ●Pre-trained on ImageNet (B_32_imagenet1k, 24 layers, the 

last layer was changed from 1000 output neurons to N 

output neurons for N classes) 

●batch size = 32 

●Maximum number of tiles = 500 

●Optimizer = Adam 

●learning rate = 1e-4 (weight decay = 1e-5) 

( Dosovitskiy et al., 2020 , Touvron et al., 2020 ) N/A 

MIL ●Extract features using a Resnet-50 (which is pre-trained on 

ImageNet) for all the tiles of a slide 

●batch size = 1 

●Optimizer = Adam 

●learning rate = 1e-4 (weight decay = 1e-5) 

●dropout = True 

( Dietterich et al., 1997 ) ( Campanella et al., 

2019 ) 

AttMIL ●Extract features using a Resnet-50 (which is pre-trained on 

ImageNet) for all the tiles of a slide 

●batch size = 32 

●Optimizer = Adam 

●learning rate = 1e-3 (weight decay = 1e-5) 

( Ilse et al., 2018 ) ( Yao et al., 2020 ) 

CLAM ●Extract features using a Resnet-50 (which is pre-trained on 

ImageNet) for all the tiles of a slide 

●batch size = 1 

●Optimizer = Adam 

●learning rate = 1e-5 (weight decay = 1e-5) 

●Model size = small 

●Bag loss = Cross Entropy 

●Instance Loss = SmoothTop1SVM Berrada et al., 2018 . 

●dropout = True 

( Lu et al., 2021 ) ( Lu et al., 2021 ) 
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eakly-supervised end-to-end classification approaches. We ex- 

luded all studies which were designed for segmentation and ob- 

ect detection in WSIs, for none-histopathology images, none-H&E 

tained images, survival, and prognostication. We sub-classified the 

tudies into classical weakly-supervised, multiple-instance learning 

MIL) and other methods (Suppl. Figure 5). 

rediction tasks and experimental design 

We benchmarked all technical approaches in six end-to-end 

rediction tasks, selected to represent a wide range of clinically 

elevant problems. To this end, we trained algorithms to predict 

ach of these targets from raw histological whole slide images: (1) 

iagnosis of renal cell carcinoma subtype (clear cell RCC, chro- 

ophobe RCC, and Papillary RCC); (2) prediction of microsatel- 

ite instability (MSI) or mismatch repair deficiency (dMMR) in 

olorectal cancer; (3) prediction of BRAF mutation in colorectal 

ancer; (4) prediction of MSI/dMMR in gastric cancer; (5) detec- 

ion of Epstein-Barr Virus (EBV) presence in gastric cancer and 

6) prediction of FGFR3 point mutations in bladder cancer. MSI 

nd dMMR have a very high degree of overlap and are inter- 

hangeably used in clinical routines ( Molecular testing strategies 

or Lynch syndrome in people with colorectal cancer - NICE Guid- 

nce., 2019 ). Here, we use the term “MSI” throughout the study. 
4 
or each task, one training and one testing cohort were defined. 

irst, we performed a within-cohort experiment on each training 

et by patient-level three-fold cross-validation (DACHS-CRC, BERN- 

astric, AACHEN-Bladder, TCGA-RCC). Subsequently, we re-trained 

 classifier for each prediction task on the training cohorts and ex- 

ernally validated it on the test cohort (TCGA-CRC, TCGA-Gastric, 

CGA-Bladder, AACHEN-RCC). The validation cohorts were not used 

or any other purpose except for the validation of the final model. 

round truth for prediction tasks 

The ground truth for the prediction targets were obtained as 

ollows: For TCGA-CRC and TCGA-STAD, MSI and EBV status were 

btained from a public source ( Liu et al., 2018 ) as described before

 Kather et al., 2020 ). For TCGA-RCC, images from the three mor- 

hological subtypes were obtained separately from the GDC data 

ortal (TCGA-KIRP for papillary, KIRC for clear cell, and KICH for 

hromophobe tumors). In DACHS, MSI status was obtained by 3- 

lex PCR, and BRAF V600E mutational status was obtained by im- 

unohistochemistry (IHC) on tissue microarrays and by Sanger se- 

uencing, as described before ( Alwers et al., 2019 , Jia et al., 2016 ).

or the BERN cohort, MSI/dMMR status was obtained with IHC for 

NA repair enzymes and EBV status was obtained by Epstein-Barr 

irus (EBV)-encoded RNA (EBER) in-situ hybridization. AACHEN- 
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LADDER comprised bladder carcinomas from a real-world cohort 

 Loeffler et al., 2021 ) and FGFR3 mutational status was obtained by 

hole-exome sequencing or identified using the SNaPshot method 

 Hurst et al., 2009 ). In the AACHEN-RCC cohort, the subtype was 

etrieved from the routine pathology report. 

mage preprocessing 

The input images for all the methods were preprocessed 

ased on the “Aachen protocol for Deep Learning histopathology”

 Muti et al., 2020 ). Based on this protocol, the digitized whole slide

mages were tessellated into smaller image tiles of (512 ×512) pix- 

ls at a resolution of 0.5 micrometers per pixel (MPP). During this 

rocess, tiles containing background and artifacts were removed 

rom the data set (using canny edge detection in Python’s OpenCV 

ackage). Extracted tiles were color normalized using the Ma- 

enko method to reduce the inter-cohort color bias ( Macenko et al., 

009 ). No manual annotations were applied to the whole 

lide images and all models were trained only with slide-level 

abels. 

rtificial intelligence methods 

For our benchmarking task, we implemented and systemati- 

ally compared six different methods for end-to-end artificial in- 

elligence on WSI ( Table 1 ). “Classical weakly-supervised” meth- 

ds assume that all tiles from a given slide inherit the slide label 

or classification ( Coudray et al., 2018; Kather et al., 2019 ).Models 

re trained on N randomly selected tiles per WSI and tile-level 

redictions are averaged for each patient. Empirically, this can 

ield clinical-grade performance despite weak labels ( Coudray and 

sirigos, 2020 , Echle et al., 2020 ), even without any annotation 

 Kather et al., 2020 , Muti et al., 2021 ). Three different AI models

ere used within this classical approach: ResNet, EfficientNet, and 

ision Transformers (ViT). 

1. ResNets are currently the de-facto standard for supervised 

transfer learning due to their higher performance and efficiency 

when compared to other CNN models ( He et al., 2016 ). The 

model was pre-trained on ImageNet and fine-tuned by transfer 

learning on each benchmark task separately. This approach was 

motivated by a number of previous studies ( Echle et al., 2020 , 

Kather et al., 2019 , Muti et al., 2021 , van Treeck et al., 2021 ). 

2. EfficientNet aims to scale up the baseline CNN which has been 

referred to as EfficientNet-B0 ( Tan and Le, 2019 ). The com- 

mon approach in designing any CNN is to develop a smaller 

version of the network and then scale it up to reach higher 

performance. EfficientNet scales the width, depth, and resolu- 

tion of the network using the compound scaling method, which 

achieves state-of-the-art accuracies on smaller and therefore 

faster networks. 

3. ViT is the most modern AI architecture analyzed within the 

classical workflows. Since 2017, attention-based models have 

become the dominant selection in natural language process- 

ing (NLP) ( Vaswani et al., 2017 ). In 2020, the high perfor- 

mance of transformers in visual tasks has been demonstrated 

( Dosovitskiy et al., 2020 ). The input to the vision transformer 

is flattened 2D patches extracted from the original image. All 

the layers of the transformer use a constant latent vector size. 

Through a patch embedding block, the flattened patches get 

mapped to D dimensions using a trainable linear projection. 

This step is followed by a position embedding block which adds 

positional information to each patch. The encoder of the trans- 

former consists of alternating layers of self-attention, multilayer 

perceptron (MLP), layer norm (LN) before each block, and resid- 

ual connections after each block. Although ViTs showed very 
5 
good performance on the ImageNet data set, their performance 

on histopathological images with smaller sizes has not been 

systematically investigated before this study. 

The conceptual limitations of the classical weakly-supervised 

omputational pathology workflow are addressed by multiple in- 

tance learning (MIL). MIL groups all tiles from a given patient in 

bags”. The label of individual tiles is unknown, but the label of the 

ag is positive if there is at least one positive instance within that 

ag. In theory, MIL is well suited to handle a heterogeneous set 

f tiles obtained from different regions in a WSI. In this study, we 

ested three different MIL methods: Classical MIL, Attention-based 

IL (AttMIL), and Clustering constrained Attention MIL (CLAM). 

1. Classical MIL has been used diversely in the processing of 

histopathological images to address the problem of label in- 

heritance from slides to tiles ( Das et al., 2018 , Ilse et al., 2018 ,

Sudharshan et al., 2019 , Xu et al., 2014 ) The basic framework 

of MIL was in the past successfully applied to large-scale image 

classification tasks in histopathology ( Campanella et al., 2019 ). 

The naive approach uses a max-pooling layer, so that the patch 

with the highest predicted probability score for the positive 

class is used to represent the final slide-level prediction. 

2. AttMIL uses an attention mechanism consisting of two fully 

connected layers which compute a scalar attention score for 

each tile. Each of the tiles’ embeddings is then scaled with 

the softmax of the tile’s attention score. By summing up these 

scaled embeddings, we obtain a bag-level feature vector. An- 

other fully connected layer then transforms this bag-level fea- 

ture vector into a final classification. A subset of each patient’s 

tiles is considered sufficient. In each epoch, the tiles are re- 

sampled, enabling the model to be trained on multiple patients 

in each batch ( Ilse et al., 2018 ). 

3. CLAM has been designed initially to overcome the challenges 

in the standard MIL approaches ( Lu et al., 2021 ). By using an

attention-based pooling layer, it is able to detect the most in- 

formative regions on a WSI. CLAM was empirically shown to 

outperform classical MIL ( Lu et al., 2021 ). Compared to standard 

MIL methods, which use the gradient signal only from one sin- 

gle instance from each bag to update the learning parameters, 

CLAM aggregates patch-level features into slide-level informa- 

tion required for classification, in theory achieving higher ro- 

bustness. CLAM uses low-dimensional features extracted from 

the input tiles (which is computationally expensive), but the 

actual training only uses feature vectors and the required com- 

putational power and time for training of this model is very 

low. The source code for CLAM and MIL methods are taken 

from https://github.com/mahmoodlab/CLAM and were modified 

based on our workflow. Figure 2 shows the workflow for each 

model. 

For training of all the methods, we used early stopping based 

n AUROC with at least 5 (classical methods) or 20 (MIL-based 

ethods) with the patience of 5 epochs. The reason for this selec- 

ion is that in all classical weakly-supervised methods, models are 

re-trained ImageNet. However, in MIL-based weakly-supervised 

ethods, features are extracted with a ResNet model trained on 

mageNet, but the classification model is initialized with random 

eights. 

yperparameter tuning 

For hyperparameter tuning, we used MSI prediction in the 

ACHS-CRC cohort (70% train, 30% test) and fine-tuned the re- 

uired hyperparameters for each specific method. For classical 

eakly-supervised methods and MIL-based methods, we used a 

inimum training epoch of 10 (50, respectively) with a patience 

https://github.com/mahmoodlab/CLAM
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Fig. 2. Schematic workflow of the methods. ResNet and EfficientNet as well as Vision Transformers (ViT) were used for weakly-supervised end-to-end prediction benchmark 

tasks. In addition, classical multiple instance learning (MIL) and attention-based MIL (AttMIL), and clustering-constrained attention multiple-instance learning (CLAM) were 

used for the same tasks. While classical workflows use different models (ResNet, EfficientNet, ViT), they all cast slide labels to image tiles. In contrast, MIL, AttMIL, CLAM 

cast slide labels to bags of image tiles without assuming that every single tile reflects the target of interest. 
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f 5 and then stopped training if the validation loss did not de- 

rease. For all methods, we trained models for three different 

earning rates (10e-3, 10e-4, and 10e-5), and for ResNet and Effi- 

ientNet, we searched for the best freeze ratio (0.25, 0.5, and 0.75). 

hese resulted in the optimum learning rate for each method, 

esNet (LR = 10-5, freeze ratio = 0.5), EfficientNet (LR = 10e-4, freeze 

atio = 0.25), ViT (LR = 10e-4), MIL (LR = 10e-4), AttMIL (LR = 10-3)

nd CLAM (LR = 10e-5), which were used for all subsequent experi- 

ents. 

tatistics 

The primary statistical endpoint was the area under the re- 

eiver operating curve (AUROC) calculated on the level of patients. 

onfidence intervals were obtained by 10 0 0x bootstrapping based 

n sampling with replacement. For binary classification tasks, AU- 

OCs were identical for both groups, and therefore, only the AU- 

OC for the positive group is reported. For multiclass classifica- 

ion tasks, we binarized the ground truth labels (for each class) 

nd calculated the AUROC for the prediction scores of the same 

lass (macro-averaging). To quantify whether performance differ- 

nces between models were statistically significant, we used De- 

ong’s method. This method tests whether two models have a sig- 
6 
ificant difference in their performance and accounts for the role 

f randomness in finite datasets ( DeLong et al., 1988 ). The output 

f this method is the z score (difference of AUROC of the output 

erformance of two models divided by its standard error) and the 

-value. 

ode availability 

All methods are implemented using Python 3.8 with PyTorch 

nd all source codes for preprocessing are available at https:// 

ithub.com/KatherLab/preProcessing and all codes for training and 

valuating the models with the Histology Image Analysis package 

re available at https://github.com/KatherLab/HIA under an open- 

ource license. 

esults 

dentification of commonly used weakly-supervised prediction 

ipelines 

For this benchmark study, we strived to use a representa- 

ive selection of widely used weakly-supervised end-to-end pre- 

iction pipelines for computational pathology. We deliberately fo- 

https://github.com/KatherLab/preProcessing
https://github.com/KatherLab/HIA
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used on studies indexed in PubMed to include methods which 

ave been applied to medical research questions. This literature 

earch yielded 548 results (Suppl. Figure 5) of which we ex- 

luded 452 (82%) as they were not aimed at predicting clini- 

ally relevant targets from digital WSIs using weakly-supervised 

nd-to-end approaches. This resulted in 96 studies, of which 65 

sed classical weakly-supervised workflows ( Jang et al., 2021 , 

anavati et al., 2020 , Schrammen et al., 2021 , Wang et al., 2021 ), 10

sed multiple-instance learning-based workflow ( Campanella et al., 

019 , Chen et al., 2021 , Lu et al., 2021 , Sharma et al., 2021 ) and

1 used other methods ( Li et al., 2021 , Wang et al., 2020 ). Fur-

hermore, we classified the other methods, into multi-field (reso- 

ution) convolutional neural networks (3 studies) ( Kosaraju et al., 

020 , Sha et al., 2019 ), multi-step CNN approaches (11 studies) 

 Yamashita et al., 2021 ), and the combination of CNN with machine 

earning schemes like support vector machine (SVM) (7 studies) 

 Gheisari et al., 2018 , Kott et al., 2021 ). Based on these findings,

e selected three classical weakly-supervised approaches (ResNet, 

fficientNet, and ViT-based) and three multiple-instance learning 

MIL)-based approaches (CLAM, classical MIL, and AttMIL) for this 

tudy. For all approaches, we optimized the learning rate and 

reeze ratio (Suppl. Figure 6). 

ll methods achieve high performance for subtyping of renal cell 

arcinoma 

Morphological subtyping of renal cell carcinoma (RCC) into the 

lear cell, chromophobe, and papillary subtypes is widely stud- 

ed and clinically relevant. Using the “The Cancer Genome Atlas”

TCGA) cohort (TCGA-RCC, N = 897 patients, Suppl. Table 1), we 

enchmarked classification performance of end-to-end prediction 

orkflows based on ResNet, EfficientNet, and ViT as well as clas- 

ical MIL, AttMIL, and CLAM ( Figure 2 ). We found that in strati-

ed three-fold cross-validation, all methods achieved a high clas- 

ification performance with an area under the receiver operating 

urve (AUROC) values above 0.90 ( Table 2 ). EfficientNet achieved 

he highest absolute performance with AUROCs of 0.983 (with 95% 

onfidence interval of 0.975 - 0.990), 0.992 (0.987 - 0.997) and 

.986 (0.980 - 0.992) for detection of all three classes. The weakly- 

upervised ViT-based approach yielded AUROCs of 0.977 (0.967 - 

.985), 0.984 (0.970 - 0.994) and 0.985 (0.979 - 0.991), demon- 

trating the efficiency of simple classical methods. While MIL- 

ased methods yielded a high absolute performance, this was con- 

istently lowest in all target classes, with MIL achieving AUROCs 

f 0.951 (0.935 - 0.964), 0.955 (0.934 - 0.971) and 0.943 (0.925 - 

.959). Next, we trained classifiers on all TCGA cases and validated 

hem on our in-house dataset (N = 249 patients). As expected, per- 

ormance values slightly decreased, but classic weakly-supervised 

ethods remained the highest-scoring approaches with for exam- 

le AUROCs of 0.971 (0.952 - 0.986), 0.949 (0.897 - 0.989), and 

.980 (0.963 - 0.994) for all classes in the ResNet-based approach 

 Table 3 , Suppl. Figure 7). Similarly, areas under the precision-recall 

urve (AUPRCs, Table 4 ) values also show a high performance for 

ll three classes. As an example, CLAM reaches AUPRCs of 0.989 

0.981-0.996), 0.829 (0.652-0.954), and 0.843 (0.738-0.931), which 

ased on the baseline values of (the ratio of positive cases to to- 

al number of samples) 0.74, 0.08, and 0.17 are very high. How- 

ver, the performance differences between all methods compared 

o Resnet (Suppl.Table 2), EfficientNet (Suppl.Table 3), ViT (Suppl. 

able 4), MIL (Suppl. Table 5), AttMIL (Suppl. Table 6), and CLAM 

Suppl. Table 7) did not reach statistical significance in the exter- 

al validation experiments. We conclude that AI-based RCC sub- 

yping is achievable with almost perfect accuracy compared to 

he ground truth by any of the tested computational pathology 

ethods. 
7 
lassic weakly-supervised methods excel in mutation prediction in 

olorectal cancer 

Next, we focused on the prediction of clinically actionable ge- 

etic alterations directly from H&E histology WSI: MSI and BRAF 

n colorectal cancer, MSI and EBV in gastric cancer, and FGFR3 

utations in bladder cancer. In a cross-validated experiment in 

he large DACHS cohort of colorectal cancer, EfficientNet achieved 

 state-of-the-art AUROC of 0.930 (0.906 - 0.950; N = 2039 pa- 

ients). The classical ResNet-based approach achieved the second- 

ighest performance with an AUROC of 0.917 (0.895 - 0.938). Clas- 

ic weakly-supervised classifiers generalized well to the external 

alidation cohort (TCGA-CRC, N = 426 patients) with ViT and Effi- 

ientNet yielding the highest and second-highest performance for 

SI prediction with AUROCs of 0.885 (0.834 - 0.926) and 0.883 

0.829 - 0.928), respectively. Compared to the other approaches 

IL, AttMIL, and CLAM, the performance of ViT-based classical 

eak supervision was significantly higher (Suppl. Table 4). Al- 

hough ViT slightly outperformed EfficientNet (z = 0.06), their direct 

omparison did not reach statistical significance (p = 0.95, Suppl. 

able 4). All other methods, in particular, MIL-based methods 

eached much lower performances in within-cohort experiments, 

ith classical MIL, AttMIL, and CLAM yielding AUROC of 0.709 

0.675 - 0.742), 0.880 (0.751 - 0.909), and 0.795 (0.763 - 0.828), 

espectively ( Table 2 ). Likewise, in external validation experiments, 

IL, AttMIL, and CLAM yielded the lowest performance ( Table 3 ) 

hich was statistically significantly inferior to all other approaches 

p < = 0.01, Suppl. Table 5,6, and 7). Prediction of BRAF mutational 

tatus (N = 2075 patients in cross-validation) resulted in the same 

anking of algorithms with EfficientNet achieving the highest (AU- 

OC 0.856 [0.825 - 0.887]), and classical MIL achieving the lowest 

erformance (AUROC 0.629 [0.580 - 0.676]). Also in external val- 

dation ( Table 3 ), EfficientNet (AUROC 0.808 [0.749 - 0.861]) and 

iT (0.786 [0.719 - 0.844]) significantly (p < = 0.02) outperformed 

IL and AttMIL approaches (Suppl. Table 3 and Suppl. Table 4). To 

heck the effect of imbalanced sample size for performance evalu- 

tion, AUPRC values were calculated for external validation exper- 

ments ( Table 4 ). In line with our previous findings, ViT and Effi- 

ientNet have the best performances among other models. How- 

ver, it is important to mention that the AttMIL method reached a 

ery close performance to classical weakly-supervised networks for 

olorectal cancer (AUPRC 0.535 [0.442 - 0.632] for colorectal MSI 

nd AUPRC 0.526 [0.480 - 0.526] for colorectal BRAF prediction). 

ased on the baseline value of 0.14 for colorectal MSI and 0.11 for 

olorectal BRAF, this performance shows the high capacity of deep 

earning networks in predicting colorectal MSI status directly from 

he WSI. 

rediction of molecular alterations in gastric and bladder cancer 

While colorectal cancer is among the most widely studied tu- 

or types in computational pathology, it is important to validate 

omputational methods also in rarer tumor types ( Echle et al., 

020 ). Therefore, we tested all six algorithms on the prediction of 

he clinically relevant alterations MSI and Epstein-Barr Virus (EBV) 

n gastric cancer and FGFR3 mutations in bladder cancer. We found 

hat the overall performance in our proprietary datasets (BERN for 

astric, AACHEN for bladder cancer) was lower than for colorec- 

al cancer, which is in line with previous studies ( Kather et al., 

019 , Loeffler et al., 2021 ). The highest AUROCs were 0.761 (0.680 

 0.836) for MSI in gastric cancer (N = 302 patients), 0.853 (0.645 - 

.991) for EBV in gastric cancer (N = 304 patients) and 0.751 (0.667 

 0.827) for FGFR3 in bladder cancer (N = 183 patients, Table 2 ).

he highest performance was achieved by ResNet in gastric MSI 

nd by EfficientNet in gastric EBV and by MIL in bladder FGFR3. In 

he external validation experiment for gastric cancer (TCGA-STAD 
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Table 2 

Performance statistics for within-cohort experiments. Performance was assessed by stratified three-fold patient-level cross-validation. Performance is reported as 

patient-level area under the receiver operating curve (AUROC) with a 95% confidence interval obtained by 10 0 0x bootstrapping. Pink = best, green = second-best. For 

RCC subtyping, AUROCs from top to bottom refer to clear cell, chromophobe and papillary RCC. 

Renal Cell 

Ca.subtypeTCGAN = 897 

Colorectal 

MSIDACHSN = 2039 

Colorectal 

BRAFDACHSN = 2075 

Gastric 

MSIBERNN = 302 

Gastric 

EBVBERNN = 304 BladderFGFR3AACHENN = 183 

ResNet 0.976 

(0.967-0.986) 

0.987 

(0.981-0.993) 

0.980 

(0.971-0.987) 

0.917 

(0.895-0.938) 

0.845 

(0.812-0.875) 

0.761 

(0680-0.836) 

0.773 

(0.567-0.965) 

0.746 

(0.656-0.831) 

EfficientNet 0.983 

(0.975-0.990) 

0.992 

(0.987-0.997) 

0.986 

(0.980-0.992) 

0.930 

(0.906-0.950) 

0.856 

(0.825-0.887) 

0.754 

(0.673-0.834) 

0.853 

(0.645-0.991) 

0.736 

(0.648-0.814) 

ViT 0.977 

(0.967-0.985) 

0.984 

(0.970-0.994) 

0.985 

(0.979-0.991) 

0.906 

(0.881-0.929) 

0.804 

(0.769-0.841) 

0.732 

(0.657-0.801) 

0.792 

(0.541-0.972) 

0.729 

(0.634-0.820) 

MIL 0.951 

(0.935-0.964) 

0.955 

(0.934-0.971) 

0.943 

(0.925-0.959) 

0.709 

(0.675-0.742) 

0.629 

(0.58-0.676) 

0.512 

(0.427-0.591) 

0.554 

(0.581-.0.809) 

0.751 

(0.667-0.827) 

AttMIL 0.979 

(0.976-0.988) 

0.983 

(0.972-0.992) 

0.979 

(0.971-0.985) 

0.880 

(0.851-0.909) 

0.803 

(0.765-0.842) 

0.700 

(0.618 - 0.775) 

0.681 

(0.502-0.851) 

0.731 

(0.648-0.818) 

CLAM 0.969 

(0.958-0.978) 

0.972 

(0.957-0.984) 

0.973 

(0.962-0.981) 

0.795 

(0.763-0.828) 

0.671 

(0.619-0.714) 

0.554 

(0.458-0.655) 

0.801 

(0.613-0.942) 

0.546 

(0.450-0.640) 
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ith N = 327 patients for MSI, N = 327 patients for EBV), the re-

ulting performance differences were much less clear-cut ( Table 3 ), 

ith no consistently best-performing method. However, for exter- 

al validation of FGFR3 analysis in bladder cancer (TCGA-BLCA, 

 = 325 patients), ViT and ResNet again outperformed all other 

pproaches, reaching AUROCs of 0.775 (0.704 - 0.840) and 0.773 

0.699 - 0.844), respectively. The difference between ResNet and 

IL and CLAM was statistically significant (p < = 0.03, Suppl. Table 

). 

verall assessment of classifier performance for mutation prediction 

Finally, we systematically analyzed performance differences be- 

ween the six classifiers in all five mutation prediction tasks. 

ach method was compared to the five other methods in five 

asks, yielding 25 comparisons per method. The classical weakly- 

upervised approach with ResNet significantly (p < 0.03, z > 2) out- 

erformed other methods in 5/25 tasks and was never significantly 

utperformed by another method (Suppl.Table 2). ViT significantly 

p < 0.03, z > 2) outperformed other methods in 7/25 tasks and was

ever significantly outperformed (Suppl. Table 4). EfficientNet out- 

erformed other methods in 7/25 tasks and was never signifi- 

antly outperformed (Suppl. Table 3). Classical MIL was outper- 

ormed by other methods in 15/25 tasks (Suppl. Table 5). AttMIL 

utperformed other methods in 4/25 tasks and was never outper- 

ormed by other methods (Suppl. Table 6). CLAM outperformed 

ther methods in 1/25 mutation prediction tasks but was out- 

erformed in 9/25 tasks (Suppl. Table 7). Overall, we conclude 

hat classical weakly-supervised pipelines with EfficientNet and 
8 
iT-based network architectures are reasonable algorithm choices 

or the prediction of molecular alterations from routine histol- 

gy in solid tumors. However, it should be acknowledged that the 

raining process is much more computationally intensive and thus 

uch slower for classical weakly supervised pipelines compared to 

IL-based approaches (Suppl. Figure 8). This is partially offset by 

he fact that MIL-based approaches require a computationally ex- 

ensive feature extraction by a pre-trained neural network before 

raining the actual classification model. 

xplainability of the performance differences 

To understand the reason for the observed performance dif- 

erences of the methods, we systematically compared which im- 

ge tiles were assigned the highest scores by each method, in all 

lassification tasks. We found that for renal cell carcinoma sub- 

yping - a task in which all methods performed almost equally 

ell - the highest scoring tiles showed plausible histopathologi- 

al patterns for all classes for all methods. Consistently, tiles with 

igh prediction scores for clear cell RCC showed carcinoma cells 

ith clear cytoplasm; tiles predictive of chromophobe RCC showed 

 perinuclear halo characteristic of this subtype, and tiles with 

igh scores for papillary RCC showed a papillary tissue architec- 

ure ( Figure 3 ). In contrast, for MSI prediction in colorectal cancer 

 a task in which classical end-to-end methods outperformed MIL- 

ased methods - the typical MSI-like morphology ( Greenson et al., 

009 ) includes poor differentiation, mucinous differentiation, and 

umor-infiltrating lymphocytes. These patterns were prominently 

isible in highly scoring tiles selected by high-performing meth- 
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Table 3 

Performance statistics for external validation experiments. Performance is reported as patient-level area under the receiver operating curve (AUROC) with a 95% confidence 

interval obtained by 10 0 0x bootstrapping. Pink = best, green = second-best method. For RCC subtyping, AUROCs from top to bottom refer to clear cell, chromophobe and 

papillary RCC. Statistical significance is reported in Suppl. Tables 2–7. 

Renal Cell 

Ca.subtypeAACHENN = 249 

Colorectal 

MSITCGAN = 426 

Colorectal 

BRAFTCGAN = 500 

Gastric 

MSITCGAN = 327 

Gastric 

EBVTCGAN = 327 BladderFGFR3TCGAN = 325 

ResNet 0.971 

(0.952-0.986) 

0.949 

(0.897-0.989) 

0.980 

(0.963-0.994) 

0.852 

(0.792-0.903) 

0.777 

(0.703-0.837) 

0.657 

(0.582-0.735) 

0.779 

(0.664-0.883) 

0.773 

(0.699-0.844) 

EfficientNet 0.958 

(0.928-0.982) 

0.944 

(0.890-0.987) 

0.969 

(0.930-0.995) 

0.883 

(0.829-0.928) 

0.808 

(0.749-0.861) 

0.739 

(0.668-0.810) 

0.787 

(0.675-0.887) 

0.772 

(0.703-0.838) 

ViT 0.961 

(0.933-0.982) 

0.957 

(0.912-0.990) 

0.963 

(0.926-0.992) 

0.885 

(0.834-0.926) 

0.786 

(0.719-0.844) 

0.727 

(0.650-0.798) 

0.775 

(0.661-0.870) 

0.775 

(0.704-0.840) 

MIL 0.941 

(0.910-0.967) 

0.974 

(0.778-0.961) 

0.931 

(0.900-0.960) 

0.585 

(0.506-0.667) 

0.611 

(0.531-0.687) 

0.596 

(0.521-0.678) 

0.795 

(0.712-0.872) 

0.597 

(0.508-0.683) 

AttMIL 0.964 

(0.938-0.983) 

0.948 

(0.862-0.994) 

0.962 

(0.930-0.986) 

0.819 

(0.756-0.874) 

0.744 

(0.672-0.808) 

0.728 

(0.659-0.798) 

0.732 

(0.619-0.836) 

0.673 

(0.586-0.757) 

CLAM 0.966 

(0.946-0.986) 

0.927 

(0.812-0.995) 

0.963 

(0.939-0.983) 

0.656 

(0.581-0732) 

0.673 

(0.595-0.752) 

0.709 

(0.642-0.780) 

0.813 

(0.712-0.893) 

0.632 

(0.545-0.713) 
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ds ResNet, EfficientNet and ViT. In contrast, MIL-based methods 

ssigned the highest prediction scores to image tiles at the tis- 

ue boundary, less than half of which clearly showed MSI-like 

orphology ( Figure 4 ). In addition, we analyzed the slide-level 

eatmaps of all model predictions for the RCC classification task 

 Figure 5 ). In this visualization, we found that MIL-based ap- 

roaches generally yield a clearer outline of the actual tumor lo- 

ation, but the overall (slide-level) score is often better in the clas- 

ical weakly-supervised approaches. This mirrors and supports the 

igher AUROCs for the classical approaches and motivates future 

tudies to benchmark AUROC and visual quality of heatmaps. 

iscussion 

ummary of key findings 

In this study, we provide a systematic benchmark for six AI al- 

orithms applied to six clinical problems in computational pathol- 

gy. The selection of these algorithms was motivated by a sys- 

ematic search of the applied research literature and was repre- 

entative of the research field. To benchmark these six pipelines, 

e selected six clinically relevant tasks which were previously ad- 

ressed in one or several publications and are of direct clinical rel- 

vance. ( Kather et al., 2020 , Kather et al., 2019 , Loeffler et al., 2021 ,

u et al., 2021 , Velmahos et al., 2021 ) As a result of this system-

tic benchmarking, we demonstrate that morphological subtyping 

f renal cell carcinoma (RCC) is an easy task in which most meth- 

ds reach a high performance ( Table 1 and Table 2 ), without sig-
9

ificant differences between methods except for classical MIL vs. 

esNet (Suppl. Table 2, 3, 4, 5, 6, and 7). By counting the num- 

er of times each method outperformed other methods (or was 

utperformed by other methods), a tentative ranking of the ap- 

roaches in our benchmark experiments is as follows: Efficient- 

et and ViT (Suppl.Table 3 and 4), followed by ResNet (Suppl. 

able 2), followed by AttMIL (Suppl. Table 6), followed by CLAM 

Suppl. Table 7) and lastly, classical MIL (Suppl. Table 5). While 

he best approach varied between the different benchmark tasks in 

ross-validated within-cohort ( Table 2 ) and external validation ex- 

eriments ( Table 3 ), an interesting and perhaps unexpected result 

s that classical weakly-supervised approaches often outperform 

ore sophisticated MIL-based approaches, even modern attention- 

ased MIL pipelines. Additionally Weakly-supervised approaches 

howed also higher AUPRC values for the external validation ex- 

eriments. While AttMIL had very similar performance to the clas- 

ic weakly-supervised models, it also reaches high AUPRC values 

n comparison to the baseline value for each dataset. In these clas- 

ical approaches, all tiles inherit the slide label, which is a strong 

implification. Although this simplification leads to label noise (the 

round truth label is assigned to all tiles generated from a slide, 

ot just the tumor tissue), this does not seem to impair perfor- 

ance when a large portion of the slide is a tumor, as in the 

urgical resection specimen in this study. In general, the perfor- 

ance of the models for gastric cancer is lower in comparison to 

olorectal cancer. While this finding is in line with previous stud- 

es ( Echle et al., 2020 , Muti et al., 2021 ), it is conceivably due to

ore diverse histological patterns in gastric cancer, which makes 
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Fig. 3. Explainability of subtyping of renal cell carcinoma (RCC). The six randomly selected high-scoring tiles from 25 high-scoring tiles (5 high-score tiles per 5 high- 

score patients) in the external validation experiment as selected by each method are displayed. For this benchmark task, all six methods achieved a high performance. 

Correspondingly, all methods succeeded in selecting image tiles with patterns representative of known features of RCC subtypes. 
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t harder for the ANNs to detect a molecular subgroup like MSI 

Suppl. Figure 9). In the next sections, we will discuss possible rea- 

ons for these observations, as well as further steps towards the 

evelopment of new pipelines. 

lassical weakly-supervised methods perform well despite label noise 

While classical approaches, specially ResNet-based methods, 

ave been used since 2018 ( Bhatt et al., 2021 , Bychkov et al.,

021 , Coudray et al., 2018 , Hinata and Ushiku, 2021 , Kather et al.,

019 ), MIL has been first used in a large-scale computational 
10 
athology study in 2019 ( Campanella et al., 2019 ). While clas- 

ical MIL is susceptible to artifacts and classifier instability, the 

ewer MIL-based variant CLAM has been shown to be more ro- 

ust and powerful. ( Lu et al., 2021 ) CLAM performs well for 

orphological subtyping of lung cancer and renal cell carcinoma 

 Lu et al., 2021 ) as well as for prediction of primary tumor type

rom metastatic tissue ( Lu et al., 2021 , Lu et al., 2021 ) Simi-

arly, our implementation of AttMIL is a simplification of CLAM, 

ut still conceptually superior to classical MIL. In our study, all 

IL-based approaches yielded visually more appealing predic- 

ion heatmaps compared to classical weakly-supervised workflows 
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Fig. 4. Explainability of microsatellite instability (MSI) prediction in colorectal cancer (CRC). The highest-scoring tiles for the five highest-scoring patients in the ex- 

ternal validation experiment are displayed. Resnet, EfficientNet, and ViT achieved the highest performance. This corresponds to a selection of biologically plausible tiles, 

showing poorly differentiated, mucinous tumors for MSI. Conversely, MIL, AttMILand CLAM selected tiles with tissue edges and other artifacts, corresponding to their lower 

performance. 
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 Figure 5 ). However, this did not translate into a higher perfor- 

ance, as the prediction scores for the true class were gener- 

lly higher in classical weakly-supervised approaches, as shown 

or representative slides ( Figure 5 ) and confirmed by the overall 

igher AUROCs in classical weakly-supervised approaches. A pos- 

ibility for the lower performance of MIL/CLAM than the classi- 

al weakly-supervised approach is that an off-the-shelf pre-trained 

etwork is used for feature extraction in MIL/CLAM whereas net- 

orks are trained directly on images in classical weakly-supervised 

pproaches. Additionally, in MIL-based approaches, all tiles are ag- 
11 
regated in a bag which inherits the slide label and is shown re- 

eatedly to the network. In contrast, in classic weakly-supervised 

odels, each tile inherits the slide label. Each slide yields 100s 

f tiles and therefore, the network is trained on 100s of in- 

tances of this slide with hard labels. This is an efficient form of 

ata augmentation which is missing from MIL. Also, Because MIL- 

ased workflows learn to focus their attention on the tumor tis- 

ue, they might miss visual clues in the normal tissue around the 

umor. Previous work by Brockmoeller et al. ( Brockmoeller et al., 

022 ) has shown that even supposedly “normal” tissue can contain 



N. Ghaffari Laleh, H.S. Muti, C.M.L. Loeffler et al. Medical Image Analysis 79 (2022) 102474 

Table 4 

Area under the precision recall curve (AUPRC) for all external validation experiments. Pink = best, green = second-best method. 

Renal Cell Ca. 

subtype 

AACHEN 

N = 249 

Colorectal 

MSI 

TCGA 

N = 426 

Colorectal 

BRAF 

TCGA 

N = 500 

Gastric 

MSI 

TCGA 

N = 327 

Gastric 

EBV 

TCGA 

N = 327 

Bladder 

FGFR3 

TCGA 

N = 325 

ResNet 

0.99(0.983- 

0.996)0.749(0.514- 

0.914)0.907(0.815-0.973) 0.541(0.409-0.670) 0.324(0.229-0.448) 0.285(0.205-0.413) 0.325(0.165-0.509) 0.428(0.295-0.565 

EfficientNet 0.983 

(0.963-0.994) 

0.744 

(0.546-0.899) 

0.896 

(0.800-0.979) 

0.668 

(0.548-0.775) 

0.36 

(0.253-0.487) 

0.38 

(0.265-0.531) 

0.271 

(0.146-0.453) 

0.385 

(0.254-0.53) 

ViT 0.986 

(0.973-0.994) 

0.732 

(0.484-0.896) 

0.896 

(0.802-0.966) 

0.672 

(0.558-0.769) 

0.304 

(0.215-0.414) 

0.376 

(0.258-0.530) 

0.354 

(0.173-0.550) 

0.394 

(0.275-0.548) 

MIL 0.982 

(0.971-0.990) 

0.713 

(0.514-0.883) 

0.695 

(0.514-0.883) 

0.196 

(0.138-0.283) 

0.167 

(0.115-0.253) 

0.226 

(0.164-0.337) 

0.199 

(0.116-0.337) 

0.212 

(0.137-0.318) 

AttMIL 0.953 

(0.932-0.974) 

0.751 

(0.574-0.876) 

0.831 

(0.740-0.907) 

0.535 

(0.442-0.632) 

0.526 

(0.480-0.569) 

0.373 

(0.200-0.537) 

0.422 

(0.308-0.528) 

0.426 

(0.328-0520) 

CLAM 0.989 

(0.981-0.996) 

0.829 

(0.652-0.954) 

0.843 

(0.738-0.931 

0.221 

(0.156-0.304) 

0.248 

(0.171-0.362) 

0.304 

(0.212-0.424) 

0.272 

(0.141-0.451) 

0.267 

(0.166-0.394) 
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nformation which the classical weakly supervised methods can 

xtract. 

Collectively, our findings demonstrate that researchers should 

ot entirely rely on MIL-based approaches without testing them 

gainst a simpler and potentially more powerful classical weakly- 

upervised approach for their specific problem. In general, our 

ndings motivate a future development of robust pipelines which 

ombine the attention mechanism of modern MIL-based ap- 

roaches with the overall higher performance of classical weak su- 

ervision. Some previous studies have used MIL for needle-in-a- 

aystack problems, such as the detection of small nests of tumor 

ells in biopsy tissue ( Campanella et al., 2019 ) or in lymph nodes.

 Ehteshami Bejnordi et al., 2017 ) Because the present study was 

ocused on the prediction of tumor subtypes and molecular alter- 

tions, we did not include such a problem in the study. In sum- 

ary, our benchmark study provides important actionable advice 

or future studies and real-world applications on surgical resection 

issue. 

ision transformers are a new class of highly performing models 

Within weakly-supervised workflows, convolutional neural net- 

orks (CNNs) are the de-facto standard architecture. Recently, Vi- 

ion transformers (ViTs) have become available and shown promis- 

ng performance in computer vision tasks ( Dosovitskiy et al., 2020 ). 

herefore, in the present study, we also benchmarked a new clas- 

ical weakly-supervised pipeline using a ViT instead of CNNs. 

ur data show that ViT performed on par with but never sig- 

ificantly outperformed the CNNs (Suppl. Table 4). However, the 

iT-based classical weakly-supervised approach outperformed MIL 
12 
nd CLAM. This finding is of high practical relevance for aca- 

emic and commercial actors in computational pathology, as ViTs 

epresents a relatively novel technology, which has been broadly 

pplied outside of medicine but is still new to computational 

athology. 

imitations of this study and outlook 

There are multiple limitations of our study: it is in the na- 

ure of technical benchmarks that neither all possible technical ap- 

roaches nor all possible applications can be evaluated. We moti- 

ate our selection of the algorithms through a systematic litera- 

ure review in which we demonstrate that the selected pipelines 

epresent the majority of the computational pathology literature 

n applied research studies indexed in PubMed. However, it is pos- 

ible that other, less widely used approaches are even better than 

he ones we tested. Regarding the clinical applications, we inves- 

igate molecular subtyping in multiple tumor types. While these 

asks are all similar from a technical point of view (they are all 

inary classification tasks), they span a range of different biomed- 

cal applications. Some of these prediction tasks are easy (classi- 

cation of renal cell carcinoma). Other tasks are harder but the 

atterns which need to be detected are known (MSI) and some 

re harder and the target patterns are not fully known (FGFR3 in 

ladder cancer). However, future work should validate our findings 

n other prediction tasks, especially also in regression tasks, which 

re less commonly found in the applied computational pathology 

esearch literature. Importantly, as part of our study, we release an 

pen-source workflow that includes all five approaches: the histol- 

gy image analysis package (HIA). HIA is a comprehensive PyTorch- 
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Fig. 5. Whole slide prediction maps of representative cases in the renal cell car- 

cinoma dataset. Each column represents one case of a given class. Tile predictions 

are visualized as a heatmap for each of the six methods. Slide-level averages are 

shown next to each map. 
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ased library that enables academic and commercial researchers to 

asily benchmark all tested methods on their own datasets, using 

ust a single implementation. After initial submission of our article, 

ultiple other open-source pipelines for computational pathology 

ave become available, such as DeepMed ( van Treeck et al., 2021 ), 

iatoolbox ( Pocock et al., 2021 ) and slideflow ( Dolezal et al., 2021 ).

hese packages contain different im plementations of many of the 

ame algorithms used in our study, so that our findings could be 

elpful for users of these open-source pipelines when selecting a 

pecific algorithm for a given image analysis problem. 

onclusion 

In this study, we provide a large-scale benchmark of multiple 

I approaches in computational pathology using multiple large pa- 

ient cohorts. We provide HIA, an easy-to-use computational im- 
13 
lementation which is not limited to one particular method and is 

herefore reusable and extensible. Surprisingly, for the prediction 

f molecular alterations, the classical weakly-supervised workflow 

as consistently superior to MIL. This provides researchers with 

 clear guideline and with tools of which AI methods should be 

sed in digital pathology. In addition, for the first time, we use Vi- 

ion Transformers (ViT) in computational pathology, which shows 

romise for future applications. Overall, our findings highlight the 

eed to thoroughly benchmark new analysis pipelines in computa- 

ional pathology against established and simpler ones. 
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