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SUMMARY
Deep learning (DL) can predict microsatellite instability (MSI) from routine histopathology slides of colorectal
cancer (CRC). However, it is unclearwhether DL can also predict other biomarkerswith high performance and
whether DL predictions generalize to external patient populations. Here, we acquire CRC tissue samples from
two large multi-centric studies. We systematically compare six different state-of-the-art DL architectures to
predict biomarkers from pathology slides, including MSI and mutations in BRAF, KRAS, NRAS, and PIK3CA.
Using a large external validation cohort to provide a realistic evaluation setting, we show that models using
self-supervised, attention-based multiple-instance learning consistently outperform previous approaches
while offering explainable visualizations of the indicative regions and morphologies. While the prediction
of MSI and BRAF mutations reaches a clinical-grade performance, mutation prediction of PIK3CA, KRAS,
and NRAS was clinically insufficient.
INTRODUCTION

Digitized histopathological slides with hematoxylin and eosin

(H&E) staining offer a wealth of information that can be quantified

and made usable by artificial intelligence (AI), in particular by

deep learning (DL) neural networks.1 DL networks have been

developed to predict clinically relevant biomarkers directly

from H&E-stained tumor tissue sections.2–5 The application of

DL for such complex tasks represents a major part of ‘‘computa-
Cell R
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tional pathology.’’3,4,6 In colorectal cancer (CRC), DL-based pre-

dictability of biomarkers from H&E-stained tissue sections has

been reported for microsatellite instability (MSI)7–14 and, in

smaller studies, for mutations in BRAF,10,13 TP53, KRAS,

SMAD4, PIK3CA, and other genes.4,15,16 Prediction of MSI or

mismatch repair deficiency (dMMR) in CRC is one of the

most widely studied tasks17 due to its high clinical relevance:

first, the MSI status may point to hereditary causes of CRC.18

Second, MSI is the strongest predictor of response to cancer
eports Medicine 4, 100980, April 18, 2023 ª 2023 The Author(s). 1
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Table 1. All experimental results

Exp. Target Train Test Algorithm Feats. AUROC AUPRCpos AUPRCneg Norm in test

1 MSI QUASAR QUASAR INPT n.a. 0.90 ± 0.04 0.63 ± 0.09 0.98 ± 0.01 Macenko

2 BRAF QUASAR QUASAR INPT n.a. 0.74 ± 0.03 0.25 ± 0.06 0.97 ± 0.01 Macenko

3 KRAS QUASAR QUASAR INPT n.a. 0.63 ± 0.06 0.52 ± 0.07 0.72 ± 0.05 Macenko

4 NRAS QUASAR QUASAR INPT n.a. 0.50 ± 0.08 0.04 ± 0.01 0.97 ± 0.01 Macenko

5 PIK3CA QUASAR QUASAR INPT n.a. 0.54 ± 0.04 0.07 ± 0.02 0.95 ± 0.01 Macenko

6 MSI QUASAR QUASAR attMIL Wang 0.94 ± 0.02 0.76 ± 0.04 0.99 ± 0.01 Macenko

7 BRAF QUASAR QUASAR attMIL Wang 0.82 ± 0.05 0.36 ± 0.13 0.98 ± 0.01 Macenko

8 KRAS QUASAR QUASAR attMIL Wang 0.67 ± 0.04 0.57 ± 0.05 0.74 ± 0.05 Macenko

9 NRAS QUASAR QUASAR attMIL Wang 0.52 ± 0.12 0.05 ± 0.04 0.97 ± 0.01 Macenko

10 PIK3CA QUASAR QUASAR attMIL Wang 0.57 ± 0.07 0.07 ± 0.02 0.96 ± 0.01 Macenko

11 MSI QUASAR QUASAR attMIL Ciga 0.90 ± 0.03 0.64 ± 0.09 0.98 ± 0.01 Macenko

12 BRAF QUASAR QUASAR attMIL Ciga 0.74 ± 0.07 0.24 ± 0.08 0.96 ± 0.01 Macenko

13 KRAS QUASAR QUASAR attMIL Ciga 0.59 ± 0.03 0.48 ± 0.05 0.69 ± 0.03 Macenko

14 NRAS QUASAR QUASAR attMIL Ciga 0.58 ± 0.15 0.04 ± 0.02 0.98 ± 0.01 Macenko

15 PIK3CA QUASAR QUASAR attMIL Ciga 0.57 ± 0.15 0.12 ± 0.08 0.96 ± 0.02 Macenko

16 MSI QUASAR QUASAR multi-input Wang 0.94 ± 0.02 0.77 ± 0.07 0.99 ± 0.01 Macenko

17 BRAF QUASAR QUASAR multi-input Wang 0.82 ± 0.07 0.43 ± 0.11 0.98 ± 0.01 Macenko

18 KRAS QUASAR QUASAR multi-input Wang 0.66 ± 0.04 0.57 ± 0.03 0.74 ± 0.05 Macenko

19 NRAS QUASAR QUASAR multi-input Wang 0.49 ± 0.18 0.08 ± 0.07 0.97 ± 0.02 Macenko

20 PIK3CA QUASAR QUASAR multi-input Wang 0.52 ± 0.17 0.09 ± 0.10 0.95 ± 0.03 Macenko

21 MSI QUASAR QUASAR clinical data only n.a. 0.80 ± 0.03 0.37 ± 0.05 0.96 ± 0.01 n.a.

22 BRAF QUASAR QUASAR clinical data only n.a. 0.77 ± 0.08 0.24 ± 0.07 0.96 ± 0.02 n.a.

23 KRAS QUASAR QUASAR clinical data only n.a. 0.50 ± 0.06 0.41 ± 0.05 0.62 ± 0.04 n.a.

24 NRAS QUASAR QUASAR clinical data only n.a. 0.54 ± 0.13 0.06 ± 0.07 0.98 ± 0.01 n.a.

25 PIK3CA QUASAR QUASAR clinical data only n.a. 0.59 ± 0.06 0.08 ± 0.02 0.97 ± 0.01 n.a.

26 MSI QUASAR DACHS INPT n.a. 0.86 ± 0.02 0.54 ± 0.04 0.98 ± 0.01 Macenko

27 BRAF QUASAR DACHS INPT n.a. 0.78 ± 0.02 0.22 ± 0.01 0.98 ± 0.00 Macenko

28 MSI QUASAR DACHS attMIL Wang 0.92 ± 0.01 0.68 ± 0.03 0.99 ± 0.00 Macenko

29 BRAF QUASAR DACHS attMIL Wang 0.81 ± 0.01 0.27 ± 0.02 0.98 ± 0.00 Macenko

30 MSI QUASAR DACHS attMIL Ciga 0.72 ± 0.03 0.32 ± 0.05 0.95 ± 0.00 Macenko

31 BRAF QUASAR DACHS attMIL Ciga 0.73 ± 0.02 0.18 ± 0.01 0.97 ± 0.01 Macenko

32 MSI QUASAR DACHS multi-input Wang 0.92 ± 0.01 0.72 ± 0.03 0.99 ± 0.00 Macenko

33 BRAF QUASAR DACHS multi-input Wang 0.85 ± 0.01 0.35 ± 0.02 0.98 ± 0.00 Macenko

34 MSI QUASAR DACHS clinical data only n.a. 0.80 ± 0.02 0.28 ± 0.04 0.97 ± 0.00 n.a.

35 BRAF QUASAR DACHS clinical data only n.a. 0.78 ± 0.03 0.22 ± 0.04 0.97 ± 0.01 n.a.

36 MSI QUASAR DACHS INPT n.a. 0.80 ± 0.04 0.33 ± 0.08 0.97 ± 0.01 none

37 BRAF QUASAR DACHS INPT n.a. 0.75 ± 0.03 0.18 ± 0.03 0.97 ± 0.00 none

38 MSI QUASAR DACHS attMIL Wang 0.91 ± 0.01 0.67 ± 0.03 0.98 ± 0.00 none

39 BRAF QUASAR DACHS attMIL Wang 0.78 ± 0.03 0.26 ± 0.04 0.97 ± 0.00 none

40 MSI QUASAR DACHS attMIL Ciga 0.71 ± 0.05 0.25 ± 0.09 0.95 ± 0.01 none

41 BRAF QUASAR DACHS attMIL Ciga 0.68 ± 0.06 0.15 ± 0.04 0.96 ± 0.01 none

42 MSI QUASAR DACHS multi-input Wang 0.92 ± 0.01 0.72 ± 0.02 0.99 ± 0.00 none

43 BRAF QUASAR DACHS multi-input Wang 0.84 ± 0.02 0.35 ± 0.04 0.98 ± 0.00 none

44 BRAF QUASAR/MSI

subgroup

QUASAR/MSI

subgroup

attMIL Wang 0.73 ± 0.06 0.63 ± 0.09 0.84 ± 0.03 Macenko

45 BRAF QUASAR/MSS

subgroup

QUASAR/MSS

subgroup

attMIL Wang 0.66 ± 0.10 0.12 ± 0.08 0.98 ± 0.01 Macenko
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Table 1. Continued

Exp. Target Train Test Algorithm Feats. AUROC AUPRCpos AUPRCneg Norm in test

46 MSI QUASAR/BRAFwt QUASAR/BRAFwt attMIL Wang 0.89 ± 0.06 0.57 ± 0.11 0.98 ± 0.02 Macenko

47 MSI QUASAR/BRAFmut QUASAR/BRAFmut attMIL Wang 0.78 ± 0.15 0.80 ± 0.15 0.79 ± 0.15 Macenko

If the test set is the same as the training set, then five-fold cross-validation on the patient level was used. AUROCs are given asmean ± 95%confidence

intervals for the five-fold AUC scores. Precision-recall curves for experiments 32 and 33 can be found in Figure S3. Domain shift plots for experiments

6, 7, 28, and 29 can be found in Figure S4 and for experiments 16, 17, 32, and 33 in Figure S5, respectively. Ex., experiment number; Feats., features;

Norm, color normalization of the test set (training set was always color normalized).
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immunotherapy.19 Third, MSI has an important role in the man-

agement of patients with CRC, for example in the decision

whether to prescribe adjuvant chemotherapy.20

Building on evidence provided in multiple studies,7,9,14,17,21,22

the first DL algorithm for MSI prediction has received regulatory

approval in Europe in 2022 (‘‘MSIntuit CRC’’ by Owkin, France/

USA). However, various questions remain open, which is even

more relevant now that this method can be used in routine

diagnostics. The most important issue of existing MSI detection

algorithms is their generalizability.23 Usually, a pronounced per-

formance drop is observed when deploying the trained models

on external patient cohorts.21 Validation on external cohorts is

crucial for testing the translation of models’ prediction perfor-

mance and hence generalization to independent datasets. The

second issue is explainability, i.e., identifying which tissue pat-

terns are associated with which genetic alterations. The third

issue is the scope of the methods, i.e., their application to other

biomarkers beyond MSI. Many genetic alterations are related to

morphological features in tumor tissue. This is known for MSI24

and BRAFmutations25 in CRC and several mutations in other tu-

mor types.26,27 However, few studies have investigated alter-

ations beyond MSI in CRC in large patient cohorts. While recent

studies investigating the DL-based prediction of MSI status

included thousands of patients,17 studies investigating other bio-

markers such as BRAF, KRAS, NRAS, and PIK3CA mutations

are often limited to smaller cohorts with suboptimal data

quality.28

From a technical point of view, the most widely used method

for biomarker prediction in computational pathology is to train

DL networks on image tiles obtained from histological whole-

slide images (WSI).4,29 Mutation labels, however, only exist for

the entireWSI, and it is unclear which regions on theWSI express

morphologies that reflect underlying mutations. Therefore, tile

predictions must be aggregated to slide predictions. A common

approach is to apply transfer learning to models pre-trained

on ImageNet and to use mean pooling for tile-to-slide

aggregation.7,29–31 This method, the ImageNet pre-trained

(INPT) approach, was first applied in histopathology by Coudray

et al. in 2018.30 Recent proof-of-concept studies have sug-

gested that the attention-based multiple-instance learning

(attMIL)32 approach is superior to the INPT approach.12 The

image feature extractor (encoder) in attMIL can be pre-trained

via self-supervised learning (SSL). Schirris et al. used SSL-

attMIL in a pilot study on a public dataset with 360 patients.12

On this relatively small dataset, they reported a performance

gain compared with the INPT approach. However, this perfor-

mance gain has not been validated in larger cohorts. Similarly,
other works have applied the attMIL approach with and without

SSL to predict biomarkers but have only provided external

validation in small datasets, if at all.5,33,34 In summary, previous

evidence suggests that both SSL and attMIL are useful compo-

nents in weakly supervised computational pathology pipelines,

but this has not been systematically tested in a clinically relevant

task with large-scale external validation. Such a lack of large-

scale validation is a risk for the ultimate generalizability of any

biomarker.23,35

In this light, we aimed to fill two knowledge gaps by answering

two questions: first, do attMIL and SSL really provide a perfor-

mance gain compared with the INPT approach? Second, is

MSI the only predictable biomarker in CRC, or is the mutational

status of BRAF, KRAS, NRAS, and PIK3CA similarly predictable?

To this end, we implemented the INPT approach as a baseline

and trained models for the prediction of multiple biomarkers in

CRC. We tested the generalization on a test dataset and saw a

performance drop, as expected. Subsequently, we implemented

attMIL and applied it using two different SSL-trained feature ex-

tractors. We showed that one encoder outperformed the other

by a large margin. The better encoder generalized well to the

second dataset and consistently outperformed all other tested

models. Finally, we extended attMIL by including clinical patient

data and show that there was no synergy for the performance on

the training dataset, although performance on the test dataset

was increased.

RESULTS

attMIL outperforms the INPT approach for biomarker
prediction
First, we investigated the predictability of MSI, BRAF, KRAS,

NRAS, and PIK3CA directly from H&E histopathology images

in the QUASAR cohort (Tables 1 and 2). We compared the

INPT approach with SSL-attMIL using the SSL encoders by

Ciga or Wang (Figures 1A–1C). We found that the best perfor-

mances were obtained using image-only Wang-attMIL. For

prediction of MSI, BRAF, KRAS, NRAS, and PIK3CA, areas

under the receiver operating characteristic curve (AUROCs)

of 0.94 ± 0.02, 0.82 ± 0.05, 0.67 ± 0.04, 0.52 ± 0.12, and

0.57 ± 0.07 were obtained, respectively (Figures 2A–2E). Pre-

vious studies have discussed that AUROCs of close to 0.9

with good generalization have a high discriminative power,

which may be clinically relevant.9,29,36,37 In this sense, only

MSI and BRAF mutation prediction reached a potentially clin-

ically relevant level, but the prediction of the other investi-

gated biomarkers did not.
Cell Reports Medicine 4, 100980, April 18, 2023 3



Table 2. Clinico-pathological features of both cohorts

Patient/tumor characteristics QUASAR DACHS

Origin United Kingdom Germany

Number of patients 2,190 2,448

WSI format SVS SVS

MSI/dMMR ground truth IHC 4-plex or

IHC 2-plex

PCR 3-plex

MSI/dMMR, n (%) 246 (11%) 210 (9%)

MSS/pMMR, n (%) 1,529 (70%) 1,836 (75%)

Mean age at diagnosis

(standard deviation)

62.20 (±9.60) 68.46 (±10.82)

Colon cancer, n (%) 1,474 (67%) 1,488 (61%)

Rectal cancer, n (%) 526 (24%) 960 (39%)

Organ unknown, n (%) 190 (9%) 0 (0%)

Female, n (%) 848 (39%) 1,012 (41%)

Male, n (%) 1,334 (61%) 1,436 (59%)

Gender unknown (%) 8 (0%) 0 (0%)

UICC stage I, n (%) 1 (0%) 485 (20%)

UICC stage II, n (%) 1,988 (91%) 801 (33%)

UICC stage III, n (%) 192 (9%) 822 (34%)

UICC stage IV, n (%) 0 (0%) 337 (14%)

UICC stage unknown (%) 9 (0%) 3 (0%)

BRAF mutation, n (%) 120 (5%) 151 (6%)

BRAF wild type, n (%) 1,358 (62%) 1,930 (79%)

BRAF status unknown (%) 712 (33%) 367 (15%)

KRAS mutation, n (%) 555 (25%) 667 (27%)

KRAS wild type, n (%) 882 (40%) 1,397 (57%)

KRAS status unknown (%) 753 (35%) 374 (15%)

NRAS mutation, n (%) 41 (2%) n.a.

NRAS wild type, n (%) 1,430 (65%) n.a.

NRAS status unknown (%) 719 (33%) n.a.

PIK3CA mutation, n (%) 72 (3%) n.a.

PIK3CA wild type, n (%) 1,343 (61%) n.a.

PIK3CA status unknown (%) 775 (36%) n.a.

Right-sided tumor, n (%) 754 (34%) 819 (33%)

Left-sided tumor, n (%) 1,158 (53%) 1,607 (66%)

Sidedness unknown, n (%) 150 (13%) 22 (1%)

Etiology not specified any

Details on missing image and/or biomarker data for patients in the

QUASAR and DACHS cohort can be found in Figures S1 and S2, respec-

tively.
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Because using the AUROC as the sole metric is suboptimal,38

we evaluated the model performance of the image-only Wang-

attMIL model in Quasar at pre-defined threshold values (Fig-

ure 3). For MSI prediction, the 95% in-domain sensitivity

threshold of value 0.21 yielded 236 true positive, 639 false pos-

itive, 9 false negative, and 890 true negative predictions across

the five internal datasets. This globally corresponds to a sensi-

tivity of 96.3%, a specificity of 58.2%, a positive predictive value

(PPV) of 27%, and a negative predictive value (NPV) of 99%. At a

threshold value of 0.5,BRAF status was globally predicted with a
4 Cell Reports Medicine 4, 100980, April 18, 2023
sensitivity of 73.3%, a specificity of 73.5%, a PPV of 19.7%, and

an NPV of 96.9% across the five internal test sets. For BRAF sta-

tus prediction notably, the requirement of 95% in-domain sensi-

tivity comes at a high cost in specificity.

The INPT approach performed slightly but statistically signifi-

cantly worse (p < 0.05, for MSI and BRAF) than the image-only

Wang-attMIL model, achieving AUROCs of 0.90 ± 0.04,

0.74 ± 0.03, 0.63 ± 0.06, 0.50 ± 0.08, and 0.54 ± 0.04 for

MSI, BRAF, KRAS, NRAS, and PIK3CA, respectively. The

Ciga-attMIL models yielded similar results as the INPT approach

(AUROCs: MSI 0.90 ± 0.03, BRAF 0.74 ± 0.07, KRAS 0.59 ±

0.03, NRAS 0.58 ± 0.15, PIK3CA 0.57 ± 0.15), where MSI-

and BRAF-status prediction performances are compatible be-

tween the two approaches.

Together, these data show that the DL methods presented in

this article have the potential to reach clinical-grade perfor-

mance for the prediction of MSI, and near-clinical-grade perfor-

mance for the prediction of BRAF but that they do not reach a

high performance for KRAS, NRAS, and PIK3CA, despite using

the best-performing image-only Wang-attMIL models in a large

patient cohort.

There is no direct synergy between clinical data and
image data in biomarker prediction
Further, we investigated whether or not adding baseline clinical

data (gender, age, tumor location) as additional inputs improves

the internal prediction performance of the best model. Wang-

attMIL with clinical data (multi-input model) achieved the

following AUROCs: MSI 0.94 ± 0.02, BRAF 0.82 ± 0.07

(Figures 2F and 2G), KRAS 0.66 ± 0.04, NRAS 0.49 ± 0.18,

and PIK3CA 0.52 ± 0.17 (Table 1), yielding statistical compati-

bility with the image-only Wang-attMIL model for MSI and

BRAF prediction. The solely clinical-data-based model achieved

good prediction results as well (AUROCs: MSI 0.80 ± 0.03,

BRAF 0.77 ± 0.08, Figures 2F and 2G; KRAS 0.50 ± 0.06,

NRAS 0.54 ± 0.13, PIK3CA 0.59 ± 0.06, Table 1). In particular,

the solely clinical-data-based results for BRAF mutation predic-

tion were close to those obtained with the image-only Wang-

attMIL or the multi-input model and statistically compatible

with all other DL approaches. This indicates that the visual fea-

tures on H&E*stained tissue sections that are predictive of

BRAF status are by themselves only slightly superior to the clin-

ical variables. The same applies to the prediction of NRAS and

PIK3CA mutation status. For KRAS and MSI status prediction,

the image-based models outperformed the solely clinical-data-

based model. This indicates better predictability of biomarker

status from image features than from clinical variables for these

two biomarkers.

Image-only and multi-input attMIL generalizes better
than the state of the art
Next, we assessed the generalizability of QUASAR-trained

models on the DACHS cohort (Table 2; Figures S1 and S2).

One set of tiles was color normalized using the Macenko

method, while another set contained the same tiles without any

color normalization. Here, we restricted the analysis to MSI

and BRAF biomarker prediction, as other biomarkers had

already been shown to perform poorly during internal validation.
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Figure 1. Schematic workflow of this study

(A) Schematic summary of attMIL and the multi-input DL architecture: a WSI is tessellated into smaller tiles, that are subsequently pre-processed and passed

through the encoder to give image feature vectors. In the multi-input case, each image feature vector is concatenated by a vector representing the patient’s

clinical data. The set of image feature vectors per WSI is then used as input to the attMIL model. In a first embedding block, the attMIL model reduces the

dimension of each tile’s initial feature vector to 256 (from 2,048 [+4 if clinical data are used in the input] when using the Wang encoder). Then, the attention score

per tile is calculated. Using the attention score, the attention-weighted sum over all embedded feature vectors can be evaluated to give a 256-dimensional vector

representing the entire WSI (green). Finally, this vector is passed through a classification block to obtain a biomarker prediction for the input WSI.

(B) Targets and cohorts used in internal and external validation. For internal validation, we tested for MSI,BRAF,PIK3CA,KRAS, andNRAS status. Externally only

for MSI and BRAF status.

(C) List of all six DL approaches that were compared in this study. E, encoder network; P, embedding block that embeds feature vectors into a lower dimensional

space; A, attention layers; P, attention weighting; S, sum; C, classification block.
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The image-only Wang-attMIL models and the multi-input

models yielded a high performance for the prediction of MSI

and BRAF status (Figures 2F and 2G). For MSI and BRAF

prediction on color-normalized tiles in the external validation

cohort, AUROCs of 0.92 ± 0.01 and 0.81 ± 0.01 and 0.92 ±

0.01 and 0.85 ± 0.01 were obtained by image-only Wang-

attMIL and multi-input, respectively (Figures 2F–2I). For BRAF

mutation prediction, this shows a better generalization of the

multi-input compared with the image-only Wang-attMIL models.

These high AUROCs correspond to high areas under the preci-

sion-recall curve (AUPRCs) (Table 1; Figure S3), pointing to po-

tential clinical applicability. For MSI prediction in DACHS with

the 95% in-domain sensitivity threshold value of 0.21, the aver-

aged models’ scores achieved a sensitivity of 90.5%, a speci-
ficity of 79.6%, a PPV of 33.7%, and an NPV of 98.6%. At a

threshold value of 0.5, BRAF status was predicted with a sensi-

tivity of 73.3%, a specificity of 73.5%, a PPV of 19.7%, and an

NPV of 96.9% (Figure 3). Clinical statistics for correctly classified

andmisclassified patients in QUASAR andDACHS at a threshold

value of 0.5 are given in Tables S1 and S2. The models had dif-

ficulties in correctly predicting MSI-positive patients with rectal

cancer in the DACHS cohort. In the case of rectal carcinomas,

the odds ratio for the correct classification of anMSI-positive pa-

tient in QUASAR compared with DACHS was 11.7, suggesting

that more data from patients with rectal carcinoma are required

in future datasets.

Notably, when using the Wang encoder, the performance in

the validation cohort was not dependent on the presence of color
Cell Reports Medicine 4, 100980, April 18, 2023 5
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Figure 2. Biomarker prediction performance of deep-learning models

(A–E) Cross-validated AUROCs for all biomarkers obtained using the Wang-attMIL model.

(F and G) Internal cross-validated performance of all models on QUASAR and external validation on DACHS (with and without Macenko color normalization). The

bar charts show the distribution of five technical replicates and error bars indicate 95% confidence intervalls. In internal cross-validation, replicates are separate

cross-validation runs. In external validation, replicates are deployments of the individual cross-validationmodels. Central markers give the average AUROC score

in each setup.

(H and I) The error bars indicate 95% confidence intervals AUROCs obtained by models trained in each of the five folds for MSI and BRAF status prediction,

applied to the external validation set QUASAR.
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Figure 3. Test statistics for a potential screening tool using the Wang-attMIL image-only models

Test performances at thresholds of 0.25, 0.5, and 0.75 (top) and at a threshold that yielded 95% in-domain sensitivity (95-Sens. threshold) averaged across the

five models per biomarker. In-domain performances are measured by the summed model predictions over respective test sets. External performances on

DACHS are obtained by averaging scores for biomarker prediction over all five Wang-attMIL models per biomarker. Clinical statistics for correctly classified and

misclassified patients in QUASAR and DACHS at a threshold value of 0.5 are given in Tables S7 and S8.

Please cite this article in press as: Niehues et al., Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: A
retrospective multi-centric study, Cell Reports Medicine (2023), https://doi.org/10.1016/j.xcrm.2023.100980

Article
ll

OPEN ACCESS
normalization—we observed an equivalent performance on non-

color-normalized tiles (image-only Wang-attMIL: MSI 0.91 ±

0.01, BRAF 0.78 ± 0.03; multi-input: MSI 0.92 ± 0.01, 0.84 ±

0.02). Here the multi-input outperformed the image-only

Wang-attMIL models for both MSI and BRAF status prediction.

This provides further evidence that (1) the image-only Wang-

attMIL models generalize very well and do not suffer from

domain shifts and that (2) addition of clinical data can improve

generalization even further. Thus, combining morphological fea-

tures with the patient’s age, gender, and tumor location can

improve performance.

In contrast, the INPT models trained on QUASAR showed a

marked performance drop on color-normalized DACHS images

(AUROCs:MSI 0.86 ± 0.02,BRAF 0.78 ± 0.02) and further drop-

ped in performance for the non-normalized images (AUROCs:

MSI 0.80 ± 0.04, BRAF 0.75 ± 0.03). This shows that the

INPT approach is less stable and generalizes less well than the

image-only Wang-attMIL or multi-input models. The robustness

of the Wang-attMIL approach seemed to be due to the particular

encoder since the Ciga-attMIL model generalized poorly

(AUROCs color normalized: MSI 0.72 ± 0.03, BRAF 0.73 ±

0.02; AUROCs non-normalized: MSI 0.71 ± 0.05, BRAF

0.68 ± 0.06; Table 1). Results for the analysis of variances

(ANOVA) for AUROCs obtained with trained models in internal

validation and in external validation on DACHS for MSI and

BRAF status prediction are listed in Tables S3–S8.

SSL-attMIL is domain-shift invariant
Domain shifts can still hide behind high AUROC values and

can severely limit the real-world performance of DL models.38

We investigated the distribution of the image-only Wang-

attMIL model prediction scores for MSI and BRAF in the

training and test cohort. We found that the prediction scores

were similarly distributed in the training and test set for the im-

age-only Wang-attMIL (Figure S4) as well as for the multi-

input models (Figure S5). In summary, these data show that

Wang-attMIL yields classifiers with high generalizability
across the two datasets, which are independent of Macenko

normalization and do not display domain shifts. Furthermore,

adding clinical data to the models leads to even better

generalization.

Attention-based models attend to relevant tissue
regions
To comprehend the decision-making processes of trained DL

models, we investigated the visual patterns in their spatial

context on WSIs. We separately visualized attention and

prediction heatmaps for typical patients for the image-only

Wang-attMIL models (Figures 4A and 4B). For MSI prediction,

high-attention regions were confined to the tumor tissue, while

fibromuscular tissue and non-tumor epithelium were not at-

tended to as much by the model (Figures 4A and 4B). In BRAF

prediction, however, the attention was more spread out. Tumor

tissue is still attended more to than non-tumor tissue but to a

lesser extent (Figures 4A and 4B). This indicates that either the

BRAF prediction model did not learn to focus sufficiently on

the tumor tissue or that the BRAF prediction model learned

that visual features outside of the tumor region are somewhat

relevant to making predictions. In particular, lymphocyte-infil-

trated muscle tissue was assigned a high BRAF and attention

score. Confounding factors in images forBRAF status prediction

are yet another possibility. Further high-resolution heatmaps for

MSI andBRAF status for typical patients are available at Zenodo:

https://doi.org/10.5281/zenodo.7454743. Interestingly, the

presence of pen marks on some slides did not confuse the

models, as pen marks were assigned a very low attention score,

showing that the image-only Wang-attMIL model is very robust,

even to the presence of artifacts.

Distinct visual features drive MSI and BRAF prediction
MSI and BRAFmutant status are highly correlated; therefore, we

addressed whether the models recognize different sets of visual

features for either target. First, we investigated whether BRAF

mutations can be predicted in the MSI and microsatellite stable
Cell Reports Medicine 4, 100980, April 18, 2023 7
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Figure 4. Spatial patterns of attention and

classification of MSI and BRAF prediction

models

(A and B) MSI score (A) and BRAF score (B) with

corresponding attentionmaps for a typical MSI- and

BRAF-positive patient from the DACHS cohort.

(C) Plain slide view. Scores were obtained with the

best in-domain models trained on QUASAR (Wang-

attMIL model). The displayed attention distribution

is the normalized attention â = a� amin

amax � amin
, where a is

the attention score and amin and amax are the

minimum and maximum scores on the WSI. This

attention map highlights ‘‘relevant’’ tumor regions,

irrespective of whether they were predicted to be

MSI or MSS. The classification scores of the model

show the ‘‘MSI-ness’’ and ‘‘BRAF-ness’’ for each

tile. In both cases, the model correctly predicted

MSI and BRAF status on the patient level.
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Figure 5. Biomarker predictability in patient subgroups and explainability

(A) Internal validation ROCs for BRAF mutation prediction in the subgroup of MSI patients.

(B) Internal validation ROCs for BRAF status prediction in the subgroup of MSS patients.

(C) Internal validation ROCs for MSI/MSS status prediction in the subgroup of BRAF-mutated patients.

(D) Internal validation ROCs for MSI/MSS status prediction in the subgroup of BRAF wild-type patients.

(legend continued on next page)
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(MSS) subgroups of the QUASAR trial dataset. Using image-only

Wang-attMIL models, the DL system was able to detect BRAF

mutational status in the MSI subgroup, reaching a cross-vali-

dated AUROC of 0.73 ± 0.06 (Figure 5A). However,BRAF status

was not predictable in the MSS subgroup, reaching an AUROC

of 0.66 ± 0.10 (Figure 5B). Second, we repeated the analysis

for MSI status prediction in BRAF-mutated and wild-type sub-

groups in analogy: MSI status was predictable in BRAFwt pa-

tients (AUROC 0.89 ± 0.06, Figure 5C) and BRAFmut patients

(AUROC 0.78 ± 0.15, Figure 5D). We further investigated the vi-

sual features present in image tiles that were assigned high

attention and a high-class prediction score at the same time.

We found that MSI (Figure 5E) and MSS (Figure 5F) tiles showed

similar patterns to those described previously: poorly differenti-

ated tumor glands with immune-infiltrated stroma in MSI versus

well-differentiated stroma-rich tissue areas for MSS.17,24

BRAFmut (Figure 5G) and BRAFwt (Figure 5H) top tiles showed

different prominent patterns than MSI and MSS tiles, with

mucinous differentiation dominating BRAFmut tiles and well-

differentiated, stroma-rich patterns dominating BRAFwt tiles.

Using gradient-weighted class activation mapping (Grad-CAM)

to highlight relevant subregions in these top tiles, we found

that the models indeed focused on these tissue structures

(Figures 5E–5H). MSI and BRAF prediction scores were corre-

lated in all patient subgroups (Figure S6). Taken together, these

data show that MSI and BRAF prediction models detect distinct

visual features that are compatible with previous knowledge;

however, MSI features appear to be more distinct, as MSI status

is easier detectable in subgroups ofBRAFmut/BRAFwt thanBRAF

status in subgroups of MSI/MSS.

DISCUSSION

MSI prediction from histopathology with DL has been investi-

gated since 2019.7,14,17,22 Earlier works used the INPT approach

using mean pooling for slide-level aggregation.7 Recent studies

have investigated attention-based MIL approaches in the hope

of less noisy supervision and creating models able to learn to

combine global features.39–42 Most recently, SSL methods

have been adopted in the histopathology domain.12 In a smaller

pilot study, the attMIL approach has shown superior perfor-

mance comparedwith the INPT approach.12 Themain limitations

of many of theseworks, however, are that (1) they focus on only a

few clinically relevant tasks and (2) they are not validated on

external cohorts, thus lacking performance evaluation in realistic

scenarios. First, we tested the performance of two attMIL-

models with different pre-trained encoders on multiple clinically

relevant biomarkers. Second, we investigated their external

validation performance on a large dataset for internally well-pre-

dictable biomarkers. For the attMIL approach, this degree of
(E and F) Top scoring tiles and Grad-CAM saliency maps for MSI (E) and MSS (F

cohort.

(G and H) Top scoring tiles for BRAF-mutated (G) and BRAFwild-type (H) status fo

better interpretability, six out-of-focus tiles are not shown in this panel.

In (E)–(G), top tiles are the highest, top 5%, and top 10% scoring tiles in terms of th

the patients with the highest overall classification score for the target mutation (to

10.5281/zenodo.7454743. Correlation of prediction scores for MSI and BRAF sta

10 Cell Reports Medicine 4, 100980, April 18, 2023
large-scale validation is required for clinical translation but was

missing from previous studies.23

This study evaluates current state-of-the-art methods for

biomarker prediction in CRC from pathology slides in a realistic

evaluation setting: SSL-attMIL with the Wang encoder outper-

formed all other approaches. This confirms the superiority of

the attMIL approach when combined with an appropriate

encoder on a large external dataset. Our Wang-attMIL models

were generalizable and invariant to the color normalization in

the test set. In contrast, this was not the case for our Ciga-

attMIL models, where the encoder was trained on a similar, but

much smaller, dataset compared with the Wang encoder. This

provides empirical evidence that Wang’s encoder trained via

the clustering-guided contrastive learning (CCL) algorithm is su-

perior to Ciga’s encoder trained via SimCLR for the biomarker

prediction investigated in this article. Thus, the Wang encoder

provides an ideal backbone for the attMIL approach for

biomarker prediction at hand. Using the image-only Wang-

attMIL models, our approach improves the AUROC for MSI pre-

diction from 0.68 to 0.92 for training on QUASAR and testing on

DACHS compared with Echle et al.9 These results are in line with

previous studies, which demonstrated the superiority of the att-

MIL approach for biomarker prediction.12,22,40,43

Further, we demonstrated that morphological features most

relevant for a prediction made by our best image-only MSI

and BRAF models are in line with previous findings and path-

ological knowledge.17,24,25 In addition, the current study ex-

tends these previous findings by (1) showing the superiority

of the Wang-attMIL models using large cohorts with thou-

sands of patients and (2) investigating multiple biomarkers

beyond MSI.

Finally, we tested extensions of the image-only Wang-attMIL

model by concatenating image vectors with vectors represent-

ing clinical patient data. Here, we did not see direct synergy in

performance on the QUASAR cohort, but we did see enhanced

prediction performance for patients in the DACHS cohort. This

is true in particular for the prediction of BRAF biomarker status,

which shows aweaker morphological phenotype compared with

MSImutations. In this case,multi-input models stabilized predic-

tions across different datasets.

Prediction of genetic alterations such as MSI and BRAFmuta-

tion is regarded as one of the most relevant applications of

computational pathology.2 Exceeding pure research applica-

tions, the prediction of MSI status has enormous commercial

potential. This is evident in multiple companies that have devel-

oped solutions for MSI status prediction,43–45 one of which

has received CE/IVD regulatory approval in Europe in 2022

(‘‘MSIntuit CRC’’ by Owkin). Here, we chose to make our tech-

nology publicly available under an MIT open-source license so

that anyone can re-use it.
) status for the best in-domain Wang+attMIL model deployed on the DACHS

r the best in-domain Wang+attMIL model deployed on the DACHS cohort. For

e product of the tile’s attention and the tile’s classification score (left to right) for

p to bottom). High-resolution images can be found at Zenodo: https://doi.org/

tus for the best image-only model can be found in Figure S6.

https://doi.org/10.5281/zenodo.7454743
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Limitations of the study
However, we also identified limitations of DL-based biomarker

prediction. While previous studies have suggested that muta-

tions inKRAS,NRAS, andPIK3CAmight be predictable from pa-

thology images,4,22,46 we show that this performance is not in a

clinically relevant range with the methods described in this

article. Although prediction of these biomarkers was possible

with non-random AUROCs above 0.5, this is far from suitable

for clinical application. Also, we show that a trivial model that

uses only age, gender, organ, and sidedness as an input reaches

similar performances for the prediction of NRAS and PIK3CA

genes (Table 1). Thereby, our study provides suggestive evi-

dence that despite the use of large, multi-centric patient cohorts

and powerful DL models, it is not possible to predict the muta-

tional status of KRAS, NRAS, and PIK3CA from CRC histopa-

thology slides with current methods.
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Data and code availability
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source codes are available at GitHub: https://github.com/KatherLab/marugoto. Heatmaps for typical patients and high-resolution

images of top tiles have been deposited at Zenodo at Zenodo: https://doi.org/10.5281/zenodo.7454743. Models trained in this study

have been deposited to GitHub: https://github.com/KatherLab/crc-models-2022. Any additional information required to reanalyze

the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics statement
This study was performed in accordance with the Declaration of Helsinki. This study is a retrospective analysis of digital images of

anonymized archival tissue samples of multiple cohorts of CRC patients. Data were collected and anonymized and ethical approval

was obtained. The use of tissue samples from QUASAR47 was approved by the North East – York Research Ethics Committee

(08/H0903/62). DACHS was approved by the Ethics committee of the Medical Faculty at Heidelberg University (310/2001).48

Patient cohorts
QUASAR is the ‘‘Quick and Simple and Reliable’’ trial (Yorkshire, UK), which investigated treatment efficacy in patients from the

United Kingdom with mostly stage II colorectal tumors.47,49 DACHS (Darmkrebs: Chancen der Verh€utung durch Screening, South-

west Germany)50,51 is a population-based case-control and patient cohort study on CRC including samples from patients of all tumor

stages (I-IV) collected from different laboratories in the south-west of Germany coordinated by the German Cancer Research Center

(Heidelberg, Germany). In QUASAR, mismatch-repair deficiency (dMMR) or proficiency (pMMR) was determined with immunohisto-

chemistry on tissue microarrays (two-plex for MLH1 and MSH2).21 Mutational data for BRAF, KRAS, NRAS, and PIK3CA was

obtained via pyrosequencing.52 In DACHS, MSI status was determined with a three-plex PCR assay using the mononucleotide

markers BAT25, BAT26, and CAT25 in tissue sections of the paraffin-embedded tumor block. In previous work, this marker panel

was shown to differentiate MSI-high from non-MSI-high tumors with a 100% concordance of MSI-high tumors compared with the

National Cancer Institute/International Collaborative Group on HNPCC (NCI/ICG-HNPCC) marker panel, which includes the five

markers BAT25, BAT26, D17S250, D2S123, and D5S346.53,54 Mutational data for KRAS andBRAFwas obtained by variousmethods
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in subsets of this multicenter study. In detail, the methods were the single-stranded conformational polymorphism technique and

immunohistochemical analyses,55 respectively, or by Sanger sequencing.56 CONSORT charts with details on missing data and pre-

processing drop out for the QUASAR and DACHS cohort can be found in Figures S1 and S2.

METHOD DETAILS

Image preprocessing
All images from H&E stained resection tissue slides were preprocessed according to the ‘‘Aachen protocol for deep learning histo-

pathology’’.57 WSIs were tessellated into 512x512 pixels image tiles of 256 mm edge length. Tissue regions were automatically

selected using RGB thresholding (summed median brightness across RGB channels < 660) and canny edge detection by requiring

at least four edges per image tile.40 All remaining tiles were included in the analysis. The fraction of blurry or homogenous tiles was

estimated using themethod of variation of the Laplacian,58 which showed that 9.2% and 3.4% of the tiles stayed below a score value

of 80 in the QUASAR and DACHS cohorts, respectively. Tiles were processed at 224 px edge length (effective resolution of 1.14 mm

per pixel) using bilinear interpolation as implemented in PyTorch’s ‘‘Resize’’ function and normalized with ImageNet’s mean and

standard deviation of RGB pixel values. Tiles in the training set were color-normalized with Macenko’s method using a reference

image tile.7,59 In the test set, the performance of models was assessed in color-normalized and native tiles.

Biomarker prediction from whole slide images
We compare results obtained with two different DL approaches – the INPT approach against the attMIL approach. Both approaches

address a classification problem in which the objective is to predict a slide label from a collection of individual tiles.

In the INPT approach,7,30 a DL network pre-trained on ImageNet is fine-tuned using theWSI-level label assigned to each tumor tile.

Slide-level predictions are then obtained by averaging/mean-pooling of tile-level predictions. This has resulted in high-performance

models,9 but imperfect generalization to external cohorts.21

The attMIL approach is a two-stage process: First, images of tiles are compressed to image feature vectors using a pre-trained

encoder network. Second, the image feature vectors are used as input to a network that uses an attentionmechanism for aggregation

of predictions from tile to slide level. In short, this network computes an attention-weighted average of the input feature vectors which

is then classified and can thus learn which parts of the input image should be discarded for the final prediction. We trained and tested

models on top of two publicly available frozen encoders trained with self-supervised learning (SSL), referring to the generic pipeline

as ‘‘SSL-attMIL’’. Ciga et al. applied SimCLR60 to train a ResNet-18 on 400,000 pathology images selected from 57 datasets.61Wang

et al. trained a ResNet-50 on a total of 15 million pathology images retrieved from 32,000 WSIs from the full TCGA and PAIP dataset

via a clustering-guided contrastive learning (CCL) SSL algorithm.62 In CCL, the learning objective is to minimize the contrastive loss

between any two tiles from the sameWSI and to maximize the loss for any two tiles from different WSIs.62 In SimCLR, the contrastive

loss is minimized for the same tile andmaximized between any two different tiles.60 We used both pre-trained models to extract 1024

(‘‘Ciga-attMIL’’) and 2048 (‘‘Wang-attMIL’’) features per tile. The set of features from all or a large subset of tiles from a WSI (we

randomly sampled 512 every epoch per WSI) was then used as input to the basic attMIL model32 that learns to predict a single label

for a WSI.

Finally, we extended the basic attMIL approach by adding basic clinicopathological data as an additional input to themodel. These

input data are known to be associated with MSI status:24 gender, age, tumor sidedness (lef/right) and organ (colon/rectum) (Table 2).

To this end, each patient’s clinical datawas embedded into a vector representation. For each tile, this clinical data vector was concat-

enated with the image feature vector.

Setting all values of the image feature vectors to zero results in yet another model that solely depends on clinical data. We call the

two described model architectures the ‘‘multi-input’’ and ‘‘solely clinical-data-based’’ models. The multi-input and solely clinical-

data-based models were trained using the same hyperparameters as in the image-only approach. Detailed information on the

training procedure and model details are available in the STAR Methods.

Visualization and explainability
Visualization of important morphological features relevant to the decision-making processes of DLmodels is important for: 1) Finding

if there are distinct morphologies for various mutations and 2) better comprehension of model internals. For visualization, we used

three approaches. We showed the highest-scoring tiles from patients that are correctly classified with the highest scores.63 Addition-

ally, we apply Grad-CAM,64 a generalization of the class activation mapping (CAM) algorithm.65 Finally, WSI heatmaps display sepa-

rate spatial distributions of the attention and prediction scores.

Implementation of the INPT approach
In our implementation, tiles were direct inputs for transfer learning. Transfer learning requires a convolutional neural network (ResNet-

18) that was pre-trained on ImageNet combined with appropriate substitution for the fully connected classification head. First, the

new head’s weights are trained with all other layers’ weights frozen; subsequently, the remaining layers’ weights are unfrozen and

fine-tuned. Thus the network learns to predict the biomarker status for a single tile, and the patient score is calculated by averaging

across all tiles for a given patient. We used our in-house open-source pipeline DeepMed66 with a batch size of 92, the Adam optimizer
Cell Reports Medicine 4, 100980, April 18, 2023 e2
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(b1 = 0:9;b2 = 0:99;ε = 10� 5), and a learning rate of 2e-3 and 1% weight decay.67 The cross-entropy loss function was weighted

by the inverse of class frequencies to account for class imbalances. After fine-tuning the model’s head for one epoch, the full model

was trained for 32 epochs during which the learning rate was scheduled by a modified ‘‘1 cycle policy’’ as made available by fas-

tAI68–70 Maximum learning rates were set in equally spaced slices from lr_max=1e-3 for the deepest layer to lr_max/100 for the shal-

lowest layer, respectively. The learning rates sinusoidally increased from 1/5 of themaxima to themaxima over ten epochs. Then, the

learning rates were sinusoidally decreased from the maxima to 1/10,000 of the maxima over the remaining epochs. At the same time,

b1 was sinusoidally varied from 0.95 to 0.85 over the first ten and back to 0.95 over the remaining epochs. During training, tiles in the

training data set were augmented by combined operations of random rotations up to 360� with 75 % and vertical flips with 50 %

probability.

Implementation of attention-based multiple instance learning
In both self-supervised learning-attMIL approaches, a fully connected layer followed by ReLU embeds the features in a

256-dimensional space. This embedded vector is then passed through a linear layer that outputs another 256-dimensional vector

hk for tile k. Then the attention score ak for the k-th tile is calculated via:

ak =
expfwT tanhðVhkÞg

PK

j = 1

exp
�
wT tanhðVhjÞ

� (Equation 1)

where h˛R256;V ˛R128x256, w˛R128 and K is the maximal number of tiles randomly resampled every epoch for each patient. Then

the MIL pooling operation is applied via:

hsum =
XK

i = 1

aihi; (Equation 2)

where hi is the i-th tile’s embedding; a maximum of K =512 tiles were used per patient. To obtain the final probability score for each

patient, the batch of hsum s is passed through a BatchNorm1D layer, followed by Dropout layer with p=50%. Then, hsum is passed

through a fully connected layer with two output dimensions and finally, a softmax layer is applied to obtain the scores. The batch

size was 32 patients, the number of epochs was 32, the maximal learning rate was sinusoidally varied from lr_max/25 to

lr_max=1e-4 over eight epochs and back to lr_max/10.000 over the remaining epochs, no learning rate slicing was applied, b1
was varied with the same periodicity, and other hyperparameters were the same as in the INPT approach.

Implementation of multi-input prediction models
We one-hot encoded the patient’s gender and tumor location and added the age (years) as an integer variable. All variables were

normalized to be zero-centered with a normal distribution. Missing values were filled using mean-imputation. These features were

concatenated with a tile’s image feature vector before training. This extended vector was then used as input to the attMIL approach.

We performed an ablation study by setting the image features to zero to test the performance of a solely clinical-data-based model

separately.

QUANTIFICATION AND STATISTICAL ANALYSIS

Experimental design and statistics
We trained all neural network models on QUASAR via stratified five-fold cross-validation on the level of patients (‘‘within-cohort

experiment’’, for MSI, BRAF, KRAS, NRAS, and PIK3CA). Subsequently, we applied all five models to the external validation cohort

DACHS (only for MSI and BRAF). During cross-validation, a validation subset (25% of the training data) was randomly split off every

training set to check for overfitting. The area under the receiver operator characteristics curve (AUROC) and the area under the pre-

cision-recall curve (AUPRC) give statistical endpoints in our analysis, the latter being more robust to class imbalance. For clarity, we

numbered all of our experiments and summarized the results in Table 1. AUROCs of trained models for internal and for external vali-

dation for MSI and BRAF status prediction on DACHS are compared using the analysis of variances (ANOVA) test and p-values are

listed in Tables S3–S8. In addition to the AUROC, we evaluated the sensitivity and specificity of our models at thresholds of 0.25, 0.5,

0.75, and a threshold giving a 95% in-domain sensitivity. The 95% in-domain sensitivity threshold was obtained by taking the average

of each model’s 95% sensitivity thresholds on its respective internal test dataset.
e3 Cell Reports Medicine 4, 100980, April 18, 2023
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