121 research outputs found
Polymeric filament thinning and breakup in microchannels
The effects of elasticity on filament thinning and breakup are investigated
in microchannel cross flow. When a viscous solution is stretched by an external
immiscible fluid, a low 100 ppm polymer concentration strongly affects the
breakup process, compared to the Newtonian case. Qualitatively, polymeric
filaments show much slower evolution, and their morphology features multiple
connected drops. Measurements of filament thickness show two main temporal
regimes: flow- and capillary-driven. At early times both polymeric and
Newtonian fluids are flow-driven, and filament thinning is exponential. At
later times, Newtonian filament thinning crosses over to a capillary-driven
regime, in which the decay is algebraic. By contrast, the polymeric fluid first
crosses over to a second type of flow-driven behavior, in which viscoelastic
stresses inside the filament become important and the decay is again
exponential. Finally, the polymeric filament becomes capillary-driven at late
times with algebraic decay. We show that the exponential flow thinning behavior
allows a novel measurement of the extensional viscosities of both Newtonian and
polymeric fluids.Comment: 7 pages, 7 figure
Axiomatic geometric formulation of electromagnetism with only one axiom: the field equation for the bivector field F with an explanation of the Trouton-Noble experiment
In this paper we present an axiomatic, geometric, formulation of
electromagnetism with only one axiom: the field equation for the Faraday
bivector field F. This formulation with F field is a self-contained, complete
and consistent formulation that dispenses with either electric and magnetic
fields or the electromagnetic potentials. All physical quantities are defined
without reference frames, the absolute quantities, i.e., they are geometric
four dimensional (4D) quantities or, when some basis is introduced, every
quantity is represented as a 4D coordinate-based geometric quantity comprising
both components and a basis. The new observer independent expressions for the
stress-energy vector T(n)(1-vector), the energy density U (scalar), the
Poynting vector S and the momentum density g (1-vectors), the angular momentum
density M (bivector) and the Lorentz force K (1-vector) are directly derived
from the field equation for F. The local conservation laws are also directly
derived from that field equation. The 1-vector Lagrangian with the F field as a
4D absolute quantity is presented; the interaction term is written in terms of
F and not, as usual, in terms of A. It is shown that this geometric formulation
is in a full agreement with the Trouton-Noble experiment.Comment: 32 pages, LaTex, this changed version will be published in Found.
Phys. Let
Effectiveness and Adoption of a Drawing-to-Learn Study Tool for Recall and Problem Solving: Minute Sketches with Folded Lists
Drawing by learners can be an effective way to develop memory and generate visual models for higher-order skills in biology, but students are often reluctant to adopt drawing as a study method. We designed a nonclassroom intervention that instructed introductory biology college students in a drawing method, minute sketches in folded lists (MSFL), and allowed them to self-assess their recall and problem solving, first in a simple recall task involving non-European alphabets and later using unfamiliar biology content. In two preliminary ex situ experiments, students had greater recall on the simple learning task, non-European alphabets with associated phonetic sounds, using MSFL in comparison with a preferred method, visual review (VR). In the intervention, students studying using MSFL and VR had similar to 50-80% greater recall of content studied with MSFL and, in a subset of trials, better performance on problem-solving tasks on biology content. Eight months after beginning the intervention, participants had shifted self-reported use of drawing from 2% to 20% of study time. For a small subset of participants, MSFL had become a preferred study method, and 70% of participants reported continued use of MSFL. This brief, low-cost intervention resulted in enduring changes in study behavior
Outcomes of early language delay: II. Etiology of transient and persistent language difficulties
Genes are known to play an important role in causing specific language impairment, but it is unclear how far a similar etiology is implicated in transient language delay in early childhood. Two-year-old children with vocabulary scores below the 10th centile were selected from a cohort of over 2,800 same-sex twin pairs whose language was assessed by parental report at 2, 3, and 4 years of age. These children with early language delay (ELD) were divided into cases of transient and persistent language difficulties on the basis of outcome at 3 and 4 years. A DeFries-Fulker analysis (J. C. DeFries & D. W. Fulker, 1985) was used to compute group heritability (h²g) of 2-year vocabulary delay separately for those with transient and persistent difficulties. When 3-year and 4-year language attainments were used to categorize outcomes, h²g was similar and modest (.25 or less) for both transient and persistent difficulties. However, when persistent difficulties were defined according to whether parents expressed concern about language at 3 years or according to whether a professional had been consulted about language difficulties at 4 years, heritability was significantly higher. For 289 children with no professional involvement at 4 years, heritability of 2-year vocabulary delay was close to zero, whereas for 134 children with professional involvement, a significant h²g of .41 (SE= .127) was found. Early language delay appears largely environmental in origin for 2-year-olds whose parents do not go on to seek professional help
Midlife managerial experience is linked to late life hippocampal morphology and function
An active cognitive lifestyle has been suggested to have a protective role in the long-term maintenance of cognition. Amongst healthy older adults, more managerial or supervisory experiences in midlife are linked to a slower hippocampal atrophy rate in late life. Yet whether similar links exist in individuals with Mild Cognitive Impairment (MCI) is not known, nor whether these differences have any functional implications. 68 volunteers from the Sydney SMART Trial, diagnosed with non-amnestic MCI, were divided into high and low managerial experience (HME/LME) during their working life. All participants underwent neuropsychological testing, structural and resting-state functional MRI. Group comparisons were performed on hippocampal volume, morphology, hippocampal seed-based functional connectivity, memory and executive function and self-ratings of memory proficiency. HME was linked to better memory function (p = 0.024), mediated by larger hippocampal volume (p = 0.025). More specifically, deformation analysis found HME had relatively more volume in the CA1 sub-region of the hippocampus (p < 0.05). Paradoxically, this group rated their memory proficiency worse (p = 0.004), a result correlated with diminished functional connectivity between the right hippocampus and right prefrontal cortex (p < 0.001). Finally, hierarchical regression modelling substantiated this double dissociation
Which type of social activities may reduce cognitive decline in the elderly?: a longitudinal population-based study
MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers
- …
