839 research outputs found

    Etching-dependent reproducible memory switching in vertical SiO2 structures

    Full text link
    Vertical structures of SiO2_{2} sandwiched between a top tungsten electrode and conducting non-metal substrate were fabricated by dry and wet etching methods. Both structures exhibit similar voltage-controlled memory behaviors, in which short voltage pulses (1 μ\mus) can switch the devices between high- and low-impedance states. Through the comparison of current-voltage characteristics in structures made by different methods, filamentary conduction at the etched oxide edges is most consistent with the results, providing insights into similar behaviors in metal/SiO/metal systems. High ON/OFF ratios of over 104^{4} were demonstrated.Comment: 6 pages, 3 figures + 2 suppl. figure

    Three-terminal devices to examine single molecule conductance switching

    Get PDF
    We report electronic transport measurements of single-molecule transistor devices incorporating bipyridyl-dinitro oligophenylene-ethynylene dithiol (BPDN-DT), a molecule known to exhibit conductance switching in other measurement configurations. We observe hysteretic conductance switching in 8% of devices with measurable currents, and find that dependence of the switching properties on gate voltage is rare when compared to other single-molecule transistor devices. This suggests that polaron formation is unlikely to be responsible for switching in these devices. We discuss this and alternative switching mechanisms.Comment: 5 pages, 4 figures. Supporting material available upon reques

    Controlling charge injection in organic field-effect transistors using self-assembled monolayers

    Get PDF
    We have studied charge injection across the metal/organic semiconductor interface in bottom-contact poly(3-hexylthiophene) (P3HT) field-effect transistors, with Au source and drain electrodes modified by self-assembled monolayers (SAMs) prior to active polymer deposition. By using the SAM to engineer the effective Au work function, we markedly affect the charge injection process. We systematically examine the contact resistivity and intrinsic channel mobility, and show that chemically increasing the injecting electrode work function significantly improves hole injection relative to untreated Au electrodes.Comment: 5 pages, 2 figures. Supplementary information available upon reques

    Impact of edge shape on the functionalities of graphene-based single-molecule electronics devices

    Get PDF
    We present an ab-initio analysis of the impact of edge shape and graphene-molecule anchor coupling on the electronic and transport functionalities of graphene-based molecular electronics devices. We analyze how Fano-like resonances, spin filtering and negative differential resistance effects may or may not arise by modifying suitably the edge shapes and the terminating groups of simple organic molecules. We show that the spin filtering effect is a consequence of the magnetic behavior of zigzag-terminated edges, which is enhanced by furnishing these with a wedge shape. The negative differential resistance effect is originated by the presence of two degenerate electronic states localized at each of the atoms coupling the molecule to graphene which are strongly affected by a bias voltage. The effect could thus be tailored by a suitable choice of the molecule and contact atoms if edge shape could be controlled with atomic precision.Comment: 11 pages, 20 figure

    Kondo resonances and anomalous gate dependence of electronic conduction in single-molecule transistors

    Get PDF
    We report Kondo resonances in the conduction of single-molecule transistors based on transition metal coordination complexes. We find Kondo temperatures in excess of 50 K, comparable to those in purely metallic systems. The observed gate dependence of the Kondo temperature is inconsistent with observations in semiconductor quantum dots and a simple single-dot-level model. We discuss possible explanations of this effect, in light of electronic structure calculations.Comment: 5 pages, four figures. Supplementary material at http://www.ruf.rice.edu/~natelson/publications.htm

    Universal Scaling of Nonequilibrium Transport in the Kondo Regime of Single Molecule Devices

    Get PDF
    Scaling laws and universality are often associated with systems exhibiting emergent phenomena possessing a characteristic energy scale. We report nonequilibrium transport measurements on two different types of single-molecule transistor (SMT) devices in the Kondo regime. The conductance at low bias and temperature adheres to a scaling function characterized by two parameters. This result, analogous to that reported recently in semiconductor dots with Kondo temperatures two orders of magnitude lower, demonstrates the universality of this scaling form. We compare the extracted values of the scaling coefficients to previous experimental and theoretical results.Comment: 4.5 pages, 3 figure

    Inelastic electron tunneling via molecular vibrations in single-molecule transistors

    Get PDF
    In single-molecule transistors, we observe inelastic cotunneling features that correspond energetically to vibrational excitations of the molecule, as determined by Raman and infrared spectroscopy. This is a form of inelastic electron tunneling spectroscopy of single molecules, with the transistor geometry allowing in-situ tuning of the electronic states via a gate electrode. The vibrational features shift and change shape as the electronic levels are tuned near resonance, indicating significant modification of the vibrational states. When the molecule contains an unpaired electron, we also observe vibrational satellite features around the Kondo resonance.Comment: 5 pages, 4 figures. Supplementary information available upon reques

    Bi-stable tunneling current through a molecular quantum dot

    Get PDF
    An exact solution is presented for tunneling through a negative-U d-fold degenerate molecular quantum dot weakly coupled to electrical leads. The tunnel current exhibits hysteresis if the level degeneracy of the negative-U dot is larger than two (d>2). Switching occurs in the voltage range V1 < V < V2 as a result of attractive electron correlations in the molecule, which open up a new conducting channel when the voltage is above the threshold bias voltage V2. Once this current has been established, the extra channel remains open as the voltage is reduced down to the lower threshold voltage V1. Possible realizations of the bi-stable molecular quantum dots are fullerenes, especially C60, and mixed-valence compounds.Comment: 5 pages, 1 figure. (v2) Figure updated to compare the current hysteresis for degeneracies d=4 and d>>1 of the level in the dot, minor corrections in the text. To appear in Phys. Rev.

    Stepwise Quenching of Exciton Fluorescence in Carbon Nanotubes by Single Molecule Reactions

    Full text link
    Single-molecule chemical reactions with individual single-walled carbon nanotubes were observed through near-infrared photoluminescence microscopy. The emission intensity within distinct submicrometer segments of single nanotubes changes in discrete steps after exposure to acid, base, or diazonium reactants. The steps are uncorrelated in space and time, and reflect the quenching of mobile excitons at localized sites of reversible or irreversible chemical attack. Analysis of step amplitudes reveals an exciton diffusional range of about 90 nanometers, independent of nanotube structure. Each exciton visits approximately 104 atomic sites during its lifetime, providing highly efficient sensing of local chemical and physical perturbations

    Circular-Polarization Dependent Cyclotron Resonance in Large-Area Graphene in Ultrahigh Magnetic Fields

    Get PDF
    Using ultrahigh magnetic fields up to 170 T and polarized midinfrared radiation with tunable wavelengths from 9.22 to 10.67 um, we studied cyclotron resonance in large-area graphene grown by chemical vapor deposition. Circular-polarization dependent studies reveal strong p-type doping for as-grown graphene, and the dependence of the cyclotron resonance on radiation wavelength allows for a determination of the Fermi energy. Thermal annealing shifts the Fermi energy to near the Dirac point, resulting in the simultaneous appearance of hole and electron cyclotron resonance in the magnetic quantum limit, even though the sample is still p-type, due to graphene's linear dispersion and unique Landau level structure. These high-field studies therefore allow for a clear identification of cyclotron resonance features in large-area, low-mobility graphene samples.Comment: 9 pages, 3 figure
    corecore