87 research outputs found

    Expression of a novel versican variant in dorsal root ganglia from spared nerve injury rats

    Get PDF
    The size and modular structure of versican and its gene suggest the existence of multiple splice variants. We have identified, cloned, and sequenced a previously unknown exon located within the noncoding gene sequence downstream of exon 8. This exon, which we have named exon 8β, specifies two stop-codons. mRNAs of the versican gene with exon 8β are predicted to be constitutively degraded by nonsense-mediated RNA decay. Here, we tested the hypothesis that these transcripts become expressed in a model of neuropathic pain

    Modulation of folic acid bioaccessibility by encapsulation in pH-responsive gated mesoporous silica particles

    Full text link
    [EN] A study on the controlled release of folic acid (FA) from pH-responsive gated mesoporous silica particles (MSP) is reported. The MCM-41 support was synthesized using tetraethyl orthosilicate (TEOS) as hydrolytic inorganic precursor and the surfactant hexadecyltrimethylammonium bromide (CTAB) as porogen species. Calcination of the mesostructured phase resulted in the starting solid. This solid was loaded with FA to obtain the initial support S0. Moreover, this FA-loaded material was further functionalized with 3-[2-(2-aminoethylamino)ethylamino]propyltrimethoxysilane (N3) in order to obtain the gated polyamine-functionalised material S1. Solids S0 and S1 were characterized using standard solid state procedures. It was found that the functionalization process and the inclusion of FA on the pores did not modify the mesoporous structure of the starting material. FA delivery studies in water with solids S0 and S1 were carried out in water at pH 2 and 7.5. S0 was not able to completely inhibit FA delivery at acidic pH yet a rapid FA release at neutral pH was observed in few minutes. In contrast, S1 was tightly capped at pH 2 and displayed a sustained delivery of FA when the pH was switched to 7.5. In the second part of the study, FA loading and functionalization of S1-like supports was optimized. In particular, solids loaded with FA in phosphate buffered saline (PBS) and capped with N3 in acetate buffer at pH 2 exhibited a delivery capacity up to 95 μg FA/mg solid. Finally, FA release from the selected optimized supports was studied following an in vitro digestion procedure. The results showed that amine-capped MSP were not only able to hinder the release of the vitamin in gastric fluids (pH 2), but were also capable of deliver progressively the FA in presence of a simulated intestinal juice (pH 7.5) offering a suitable mechanism to control the bioaccessibility of the vitaminAuthors gratefully acknowledge the financial support from the Ministerio de Economia y Competitividad (Projects AGL201239597-C02 and MAT2012-38429-004-01) and the Generalitat Valenciana (project PROMETEO/2009/016). E.P. is grateful to the Ministerio de Ciencia e Innovacion for his Grant (AP2008-00620). C.C. thanks the Generalitat Valenciana for her post-doctoral contract VALi+D.Pérez-Esteve, É.; Fuentes López, A.; Coll Merino, MC.; Acosta, C.; Bernardos Bau, A.; Amoros Del Toro, PJ.; Marcos Martínez, MD.... (2015). Modulation of folic acid bioaccessibility by encapsulation in pH-responsive gated mesoporous silica particles. Microporous and Mesoporous Materials. 202:124-132. https://doi.org/10.1016/j.micromeso.2014.09.049S12413220

    Application of Equilibrium Models of Solution Hybridization to Microarray Design and Analysis

    Get PDF
    Background: The probe percent bound value, calculated using multi-state equilibrium models of solution hybridization, is shown to be useful in understanding the hybridization behavior of microarray probes having 50 nucleotides, with and without mismatches. These longer oligonucleotides are in widespread use on microarrays, but there are few controlled studies of their interactions with mismatched targets compared to 25-mer based platforms. Principal Findings: 50-mer oligonucleotides with centrally placed single, double and triple mismatches were spotted on an array. Over a range of target concentrations it was possible to discriminate binding to perfect matches and mismatches, and the type of mismatch could be predicted accurately in the concentration midrange (100 pM to 200 pM) using solution hybridization modeling methods. These results have implications for microarray design, optimization and analysis methods. Conclusions: Our results highlight the importance of incorporating biophysical factors in both the design and the analysis of microarrays. Use of the probe ‘‘percent bound’ ’ value predicted by equilibrium models of hybridization is confirmed to be important for predicting and interpreting the behavior of long oligonucleotide arrays, as has been shown for shor

    Correlation of Inter-Locus Polyglutamine Toxicity with CAG•CTG Triplet Repeat Expandability and Flanking Genomic DNA GC Content

    Get PDF
    Dynamic expansions of toxic polyglutamine (polyQ)-encoding CAG repeats in ubiquitously expressed, but otherwise unrelated, genes cause a number of late-onset progressive neurodegenerative disorders, including Huntington disease and the spinocerebellar ataxias. As polyQ toxicity in these disorders increases with repeat length, the intergenerational expansion of unstable CAG repeats leads to anticipation, an earlier age-at-onset in successive generations. Crucially, disease associated alleles are also somatically unstable and continue to expand throughout the lifetime of the individual. Interestingly, the inherited polyQ length mediating a specific age-at-onset of symptoms varies markedly between disorders. It is widely assumed that these inter-locus differences in polyQ toxicity are mediated by protein context effects. Previously, we demonstrated that the tendency of expanded CAG•CTG repeats to undergo further intergenerational expansion (their ‘expandability’) also differs between disorders and these effects are strongly correlated with the GC content of the genomic flanking DNA. Here we show that the inter-locus toxicity of the expanded polyQ tracts of these disorders also correlates with both the expandability of the underlying CAG repeat and the GC content of the genomic DNA flanking sequences. Inter-locus polyQ toxicity does not correlate with properties of the mRNA or protein sequences, with polyQ location within the gene or protein, or steady state transcript levels in the brain. These data suggest that the observed inter-locus differences in polyQ toxicity are not mediated solely by protein context effects, but that genomic context is also important, an effect that may be mediated by modifying the rate at which somatic expansion of the DNA delivers proteins to their cytotoxic state

    Genetic load and transgenic mitigating genes in transgenic Brassica rapa (field mustard) × Brassica napus (oilseed rape) hybrid populations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One theoretical explanation for the relatively poor performance of <it>Brassica rapa </it>(weed) × <it>Brassica napus </it>(crop) transgenic hybrids suggests that hybridization imparts a negative genetic load. Consequently, in hybrids genetic load could overshadow any benefits of fitness enhancing transgenes and become the limiting factor in transgenic hybrid persistence. Two types of genetic load were analyzed in this study: random/linkage-derived genetic load, and directly incorporated genetic load using a transgenic mitigation (TM) strategy. In order to measure the effects of random genetic load, hybrid productivity (seed yield and biomass) was correlated with crop- and weed-specific AFLP genomic markers. This portion of the study was designed to answer whether or not weed × transgenic crop hybrids possessing more crop genes were less competitive than hybrids containing fewer crop genes. The effects of directly incorporated genetic load (TM) were analyzed through transgene persistence data. TM strategies are proposed to decrease transgene persistence if gene flow and subsequent transgene introgression to a wild host were to occur.</p> <p>Results</p> <p>In the absence of interspecific competition, transgenic weed × crop hybrids benefited from having more crop-specific alleles. There was a positive correlation between performance and number of <it>B. napus </it>crop-specific AFLP markers [seed yield vs. marker number (r = 0.54, P = 0.0003) and vegetative dry biomass vs. marker number (r = 0.44, P = 0.005)]. However under interspecific competition with wheat or more weed-like conditions (i.e. representing a situation where hybrid plants emerge as volunteer weeds in subsequent cropping systems), there was a positive correlation between the number of <it>B. rapa </it>weed-specific AFLP markers and seed yield (r = 0.70, P = 0.0001), although no such correlation was detected for vegetative biomass. When genetic load was directly incorporated into the hybrid genome, by inserting a fitness-mitigating dwarfing gene that that is beneficial for crops but deleterious for weeds (a transgene mitigation measure), there was a dramatic decrease in the number of transgenic hybrid progeny persisting in the population.</p> <p>Conclusion</p> <p>The effects of genetic load of crop and in some situations, weed alleles might be beneficial under certain environmental conditions. However, when genetic load was directly incorporated into transgenic events, e.g., using a TM construct, the number of transgenic hybrids and persistence in weedy genomic backgrounds was significantly decreased.</p

    Studies on Mitigating Lipid Oxidation Reactions in a Value-Added Dairy Product Using a Standardized Cranberry Extract

    No full text
    A standardized whole cranberry extract (WCE) was used to stabilize a model sunflower-casein emulsion prototype for future formulation activities with a fresh cream cheese product. The WCE contained total organic acids (20% w/w) and polyphenols (5%), the latter consisting of total anthocyanins (10%, w/w) and proanthocyanidins (12% w/w). Antioxidant capacity of the WCE was determined by ORAC, (hydrophilic ORAC = 348.31 ± 33.45 µmol of Trolox equivalents/g; lipophilic ORAC = 11.02 ± 0.85 µmol of Trolox equivalents/g). WCE was effective at stabilizing the model emulsion at a level of 0.375% (w/w), yielding a final pH of 5.6. Generation of initial lipid peroxidation products, hexanal and pentanal was inhibited by 92.4% ± 3.9% and 66.6% ± 5.3% (n = 3), respectively, when emulsions containing WCE were incubated at 50 °C for 90 h. This information was useful for formulating a fresh cream cheese product containing WCE to produce value-added potential and good self-life. The standardized WCE gave a final pH of 5.6 for the cheese premix and also significantly (P < 0.05) lowered both the PV and CD after 28 and 21 days at 4 °C storage, respectively, compared to untreated control. We conclude that there are important functional role(s) for cranberry constituents when presented as a standardized ingredient for producing value-added, stable fresh dairy products.Land and Food Systems, Faculty ofReviewedFacult
    • …
    corecore