707 research outputs found
Structure and dynamics of hyaluronic acid semidilute solutions: a dielectric spectroscopy study
Dielectric spectroscopy is used to investigate fundamental length scales
describing the structure of hyaluronic acid sodium salt (Na-HA) semidilute
aqueous solutions. In salt-free regime, the length scale of the relaxation mode
detected in MHz range scales with HA concentration as
and corresponds to the de Gennes-Pfeuty-Dobrynin correlation length of
polyelectrolytes in semidilute solution. The same scaling was observed for the
case of long, genomic DNA. Conversely, the length scale of the mode detected in
kHz range also varies with HA concentration as which
differs from the case of DNA (). The observed behavior
suggests that the relaxation in the kHz range reveals the de Gennes-Dobrynin
renormalized Debye screening length, and not the average size of the chain, as
the pertinent length scale. Similarly, with increasing added salt the
electrostatic contribution to the HA persistence length is observed to scale as
the Debye length, contrary to scaling pertinent to the Odijk-Skolnick-Fixman
electrostatic persistence length observed in the case of DNA. We argue that the
observed features of the kHz range relaxation are due to much weaker
electrostatic interactions that lead to the absence of Manning condensation as
well as a rather high flexibility of HA as compared to DNA.Comment: 11 pages, 8 figures, submitted to PR
Recent Advances in Unconventional Density Waves
Unconventional density wave (UDW) has been speculated as a possible
electronic ground state in excitonic insulator in 1968. Recent surge of
interest in UDW is partly due to the proposal that the pseudogap phase in high
T_c cuprate superconductors is d-wave density wave (d-DW).
Here we review our recent works on UDW within the framework of mean field
theory. In particular we have shown that many properties of the low temperature
phase (LTP) in alpha-(BEDT-TTF)_2MHg(SCN)_4 with M=K, Rb and Tl are well
characterized in terms of unconventional charge density wave (UCDW). In this
identification the Landau quantization of the quasiparticle motion in a
magnetic field (the Nersesyan effect) plays the crucial role. Indeed the
angular dependent magnetoresistance and the negative giant Nernst effect are
two hallmarks of UDW.Comment: 18 pages, 12 figure
Origin of Low-Energy Excitations in Charge-Ordered Manganites
The low-energy excitations in the charge-ordered phase of polycrystalline
La0.25Ca0.75MnO3 are explored by frequency-domain terahertz spectroscopy. In
the frequency range from 4 cm^-1 to 700 cm^-1 (energies 0.4 meV to 90 meV) and
at temperatures down to 5 K, we do not detect any feature that can be
associated with the collective response of the spatially modulated charge
continuum. In the antiferromagnetically ordered phase, broad absorption bands
appear in the conductivity and permittivity spectra around 30 cm^-1 and 100
cm^-1 which are assigned to former acoustic phonons optically activated due to
a fourfold superstructure in the crystal lattice. Our results indicate that
characteristic energies of collective excitations of the charge-ordered phase
in La0:25Ca0:75MnO3, if any, lie below 1 meV. At our lowest frequencies of only
few wavenumbers a strong relaxation is observed above 100 K connected to the
formation of the charge-ordered state.Comment: 5 pages, 3 figure
Local atomic structure and discommensurations in the charge density wave of CeTe3
The local structure of CeTe3 in the incommensurate charge density wave
(IC-CDW) state has been obtained using atomic pair distribution function (PDF)
analysis of x-ray diffraction data. Local atomic distortions in the Te-nets due
to the CDW are larger than observed crystallographically, resulting in distinct
short and long Te-Te bonds. Observation of different distortion amplitudes in
the local and average structures are explained by the discommensurated nature
of the CDW since the PDF is sensitive to the local displacements within the
commensurate regions whereas the crystallographic result averages over many
discommensurated domains. The result is supported by STM data. This is the
first quantitative local structural study within the commensurate domains in an
IC-CDW system.Comment: 4 pages, 4 figure
Dielectric relaxation of DNA aqueous solutions
We report on a detailed characterization of complex dielectric response of
Na-DNA aqueous solutions by means of low-frequency dielectric spectroscopy (40
Hz - 110 MHz). Results reveal two broad relaxation modes of strength
20<\Delta\epsilon_LF<100 and 5<\Delta\epsilon_HF<20, centered at 0.5
kHz<\nu_LF<70 kHz and 0.1 MHz<\nu_HF<15 MHz. The characteristic length scale of
the LF process, 50<L_LF<750nm, scales with DNA concentration as
c_DNA^{-0.29\pm0.04} and is independent of the ionic strength in the low added
salt regime. Conversely, the measured length scale of the LF process does not
vary with DNA concentration but depends on the ionic strength of the added salt
as I_s^{-1} in the high added salt regime. On the other hand, the
characteristic length scale of the HF process, 3<L_HF<50 nm, varyes with DNA
concentration as c_DNA^{-0.5} for intermediate and large DNA concentrations. At
low DNA concentrations and in the low added salt limit the characteristic
length scale of the HF process scales as c_DNA^{-0.33}. We put these results in
perspective regarding the integrity of the double stranded form of DNA at low
salt conditions as well as regarding the role of different types of counterions
in different regimes of dielectric dispersion. We argue that the free DNA
counterions are primarily active in the HF relaxation, while the condensed
counterions play a role only in the LF relaxation. We also suggest theoretical
interpretations for all these length scales in the whole regime of DNA and salt
concentrations and discuss their ramifications and limitations.Comment: 15 pages, 9 figure
Synthesis, characterization and antimicrobial activity of bis(phthalazine-1-hydrazone)-2,6-diacetylpyridine and its complexes with CoIII, NiII, CuII and ZnII
Unconventional spin density wave in (TMTSF)2PF6 below T* ~ 4K
The presence of subphases in spin-density wave (SDW) phase of (TMTSF)2PF6
below T* ~ 4K has been suggested by several experiments but the nature of the
new phase is still controversial. We have investigated the temperature
dependence of the angular dependence of the magnetoresistance in the SDW phase
which shows different features for temperatures above and below T*. For T > 4K
the magnetoresistance can be understood in terms of the Landau quantization of
the quasiparticle spectrum in a magnetic field, where the imperfect nesting
plays the crucial role. We propose that below T* ~ 4K the new unconventional
SDW (USDW) appears modifying dramatically the quasiparticle spectrum. Unlike
conventional SDW the order parameter of USDW depends on the quasiparticle
momentum. The present model describes many features of the angular dependence
of magnetoresistance reasonably well. Therefore, we may conclude that the
subphase in (TMTSF)2PF6 below T* ~ 4K is described as SDW plus USDW.Comment: 7 pages, 9 figures, RevTeX4; misprint corrected, references updated,
a few sentences adde
Threshold electric field in unconventional density waves
As it is well known most of charge density wave (CDW) and spin density wave
(SDW) exhibit the nonlinear transport with well defined threshold electric
field E_T. Here we study theoretically the threshold electric field of
unconventional density waves. We find that the threshold field increases
monotonically with temperature without divergent behaviour at T_c, unlike the
one in conventional CDW. The present result in the 3D weak pinning limit
appears to describe rather well the threshold electric field observed recently
in the low-temperature phase (LTP) of alpha-(BEDT-TTF)_2KHg(SCN)_4.Comment: 4 pages, 2 figure
Towards a consistent picture for quasi-1D organic superconductors
The electrical resistivity of the quasi-1D organic superconductor (TMTSF)2PF6
was recently measured at low temperature from the critical pressure needed to
suppress the spin-density-wave state up to a pressure where superconductivity
has almost disappeared. This data revealed a direct correlation between the
onset of superconductivity at Tc and the strength of a non-Fermi-liquid linear
term in the normal-state resistivity, going as r(T) = r0 + AT + BT2 at low
temperature, so that A goes to 0 as Tc goes to 0. Here we show that the
contribution of low-frequency antiferromagnetic fluctuations to the
spin-lattice relaxation rate is also correlated with this non-Fermi-liquid term
AT in the resistivity. These correlations suggest that anomalous scattering and
pairing have a common origin, both rooted in the low-frequency
antiferromagnetic fluctuations measured by NMR. A similar situation may also
prevail in the recently-discovered iron-pnictide superconductors.Comment: ISCOM'09 proceedings to be published in Physica
- …
