707 research outputs found

    Structure and dynamics of hyaluronic acid semidilute solutions: a dielectric spectroscopy study

    Full text link
    Dielectric spectroscopy is used to investigate fundamental length scales describing the structure of hyaluronic acid sodium salt (Na-HA) semidilute aqueous solutions. In salt-free regime, the length scale of the relaxation mode detected in MHz range scales with HA concentration as cHA0.5c_\mathrm{HA}^{-0.5} and corresponds to the de Gennes-Pfeuty-Dobrynin correlation length of polyelectrolytes in semidilute solution. The same scaling was observed for the case of long, genomic DNA. Conversely, the length scale of the mode detected in kHz range also varies with HA concentration as cHA0.5c_\mathrm{HA}^{-0.5} which differs from the case of DNA (cDNA0.25c_\mathrm{DNA}^{-0.25}). The observed behavior suggests that the relaxation in the kHz range reveals the de Gennes-Dobrynin renormalized Debye screening length, and not the average size of the chain, as the pertinent length scale. Similarly, with increasing added salt the electrostatic contribution to the HA persistence length is observed to scale as the Debye length, contrary to scaling pertinent to the Odijk-Skolnick-Fixman electrostatic persistence length observed in the case of DNA. We argue that the observed features of the kHz range relaxation are due to much weaker electrostatic interactions that lead to the absence of Manning condensation as well as a rather high flexibility of HA as compared to DNA.Comment: 11 pages, 8 figures, submitted to PR

    Recent Advances in Unconventional Density Waves

    Full text link
    Unconventional density wave (UDW) has been speculated as a possible electronic ground state in excitonic insulator in 1968. Recent surge of interest in UDW is partly due to the proposal that the pseudogap phase in high T_c cuprate superconductors is d-wave density wave (d-DW). Here we review our recent works on UDW within the framework of mean field theory. In particular we have shown that many properties of the low temperature phase (LTP) in alpha-(BEDT-TTF)_2MHg(SCN)_4 with M=K, Rb and Tl are well characterized in terms of unconventional charge density wave (UCDW). In this identification the Landau quantization of the quasiparticle motion in a magnetic field (the Nersesyan effect) plays the crucial role. Indeed the angular dependent magnetoresistance and the negative giant Nernst effect are two hallmarks of UDW.Comment: 18 pages, 12 figure

    Origin of Low-Energy Excitations in Charge-Ordered Manganites

    Full text link
    The low-energy excitations in the charge-ordered phase of polycrystalline La0.25Ca0.75MnO3 are explored by frequency-domain terahertz spectroscopy. In the frequency range from 4 cm^-1 to 700 cm^-1 (energies 0.4 meV to 90 meV) and at temperatures down to 5 K, we do not detect any feature that can be associated with the collective response of the spatially modulated charge continuum. In the antiferromagnetically ordered phase, broad absorption bands appear in the conductivity and permittivity spectra around 30 cm^-1 and 100 cm^-1 which are assigned to former acoustic phonons optically activated due to a fourfold superstructure in the crystal lattice. Our results indicate that characteristic energies of collective excitations of the charge-ordered phase in La0:25Ca0:75MnO3, if any, lie below 1 meV. At our lowest frequencies of only few wavenumbers a strong relaxation is observed above 100 K connected to the formation of the charge-ordered state.Comment: 5 pages, 3 figure

    Local atomic structure and discommensurations in the charge density wave of CeTe3

    Full text link
    The local structure of CeTe3 in the incommensurate charge density wave (IC-CDW) state has been obtained using atomic pair distribution function (PDF) analysis of x-ray diffraction data. Local atomic distortions in the Te-nets due to the CDW are larger than observed crystallographically, resulting in distinct short and long Te-Te bonds. Observation of different distortion amplitudes in the local and average structures are explained by the discommensurated nature of the CDW since the PDF is sensitive to the local displacements within the commensurate regions whereas the crystallographic result averages over many discommensurated domains. The result is supported by STM data. This is the first quantitative local structural study within the commensurate domains in an IC-CDW system.Comment: 4 pages, 4 figure

    Dielectric relaxation of DNA aqueous solutions

    Full text link
    We report on a detailed characterization of complex dielectric response of Na-DNA aqueous solutions by means of low-frequency dielectric spectroscopy (40 Hz - 110 MHz). Results reveal two broad relaxation modes of strength 20<\Delta\epsilon_LF<100 and 5<\Delta\epsilon_HF<20, centered at 0.5 kHz<\nu_LF<70 kHz and 0.1 MHz<\nu_HF<15 MHz. The characteristic length scale of the LF process, 50<L_LF<750nm, scales with DNA concentration as c_DNA^{-0.29\pm0.04} and is independent of the ionic strength in the low added salt regime. Conversely, the measured length scale of the LF process does not vary with DNA concentration but depends on the ionic strength of the added salt as I_s^{-1} in the high added salt regime. On the other hand, the characteristic length scale of the HF process, 3<L_HF<50 nm, varyes with DNA concentration as c_DNA^{-0.5} for intermediate and large DNA concentrations. At low DNA concentrations and in the low added salt limit the characteristic length scale of the HF process scales as c_DNA^{-0.33}. We put these results in perspective regarding the integrity of the double stranded form of DNA at low salt conditions as well as regarding the role of different types of counterions in different regimes of dielectric dispersion. We argue that the free DNA counterions are primarily active in the HF relaxation, while the condensed counterions play a role only in the LF relaxation. We also suggest theoretical interpretations for all these length scales in the whole regime of DNA and salt concentrations and discuss their ramifications and limitations.Comment: 15 pages, 9 figure

    Unconventional spin density wave in (TMTSF)2PF6 below T* ~ 4K

    Get PDF
    The presence of subphases in spin-density wave (SDW) phase of (TMTSF)2PF6 below T* ~ 4K has been suggested by several experiments but the nature of the new phase is still controversial. We have investigated the temperature dependence of the angular dependence of the magnetoresistance in the SDW phase which shows different features for temperatures above and below T*. For T > 4K the magnetoresistance can be understood in terms of the Landau quantization of the quasiparticle spectrum in a magnetic field, where the imperfect nesting plays the crucial role. We propose that below T* ~ 4K the new unconventional SDW (USDW) appears modifying dramatically the quasiparticle spectrum. Unlike conventional SDW the order parameter of USDW depends on the quasiparticle momentum. The present model describes many features of the angular dependence of magnetoresistance reasonably well. Therefore, we may conclude that the subphase in (TMTSF)2PF6 below T* ~ 4K is described as SDW plus USDW.Comment: 7 pages, 9 figures, RevTeX4; misprint corrected, references updated, a few sentences adde

    Threshold electric field in unconventional density waves

    Full text link
    As it is well known most of charge density wave (CDW) and spin density wave (SDW) exhibit the nonlinear transport with well defined threshold electric field E_T. Here we study theoretically the threshold electric field of unconventional density waves. We find that the threshold field increases monotonically with temperature without divergent behaviour at T_c, unlike the one in conventional CDW. The present result in the 3D weak pinning limit appears to describe rather well the threshold electric field observed recently in the low-temperature phase (LTP) of alpha-(BEDT-TTF)_2KHg(SCN)_4.Comment: 4 pages, 2 figure

    Towards a consistent picture for quasi-1D organic superconductors

    Full text link
    The electrical resistivity of the quasi-1D organic superconductor (TMTSF)2PF6 was recently measured at low temperature from the critical pressure needed to suppress the spin-density-wave state up to a pressure where superconductivity has almost disappeared. This data revealed a direct correlation between the onset of superconductivity at Tc and the strength of a non-Fermi-liquid linear term in the normal-state resistivity, going as r(T) = r0 + AT + BT2 at low temperature, so that A goes to 0 as Tc goes to 0. Here we show that the contribution of low-frequency antiferromagnetic fluctuations to the spin-lattice relaxation rate is also correlated with this non-Fermi-liquid term AT in the resistivity. These correlations suggest that anomalous scattering and pairing have a common origin, both rooted in the low-frequency antiferromagnetic fluctuations measured by NMR. A similar situation may also prevail in the recently-discovered iron-pnictide superconductors.Comment: ISCOM'09 proceedings to be published in Physica
    corecore