2,184 research outputs found
Momentum dependence of the superconducting gap in NdFeAsO1-xFx single crystals measured by angle resolved photoemission spectroscopy
We use angle resolved photoemission spectroscopy (ARPES) to study the
momentum dependence of the superconducting gap in NdFeAsO1-xFx single crystals.
We find that the Gamma hole pocket is fully gapped below the superconducting
transition temperature. The value of the superconducting gap is 15 +- 1.5 meV
and its anisotropy around the hole pocket is smaller than 20% of this value.
This is consistent with an isotropic or anisotropic s-wave symmetry of the
order parameter or exotic d-wave symmetry with nodes located off the Fermi
surface sheets. This is a significant departure from the situation in the
cuprates, pointing to possibility that the superconductivity in the iron
arsenic based system arises from a different mechanism.Comment: 4 pages, 3 figure
Incoherently pumped continuous wave optical parametric oscillator broadened by non-collinear phasematching
In this paper, we report on a singly resonant optical parametric oscillator
(OPO) pumped by an amplified spontaneous emission (ASE) source. The pump
focusing conditions allow non-collinear phasematching, which resulted in a 230
nm (190 cm) spectral bandwidth. Calculations indicate that such
phasematching schemes may be used to further broaden OPO spectral bandwidths.Comment: 7 pages 4 figure
Concurrent transcranial direct current stimulation and progressive resistance training in Parkinson's disease: Study protocol for a randomised controlled trial
BACKGROUND: Parkinson\u27s disease (PD) results from a loss of dopamine in the brain, leading to movement dysfunctions such as bradykinesia, postural instability, resting tremor and muscle rigidity. Furthermore, dopamine deficiency in PD has been shown to result in maladaptive plasticity of the primary motor cortex (M1). Progressive resistance training (PRT) is a popular intervention in PD that improves muscular strength and results in clinically significant improvements on the Unified Parkinson\u27s Disease Rating Scale (UPDRS). In separate studies, the application of anodal transcranial direct current stimulation (a-tDCS) to the M1 has been shown to improve motor function in PD; however, the combined use of tDCS and PRT has not been investigated. METHODS/DESIGN: We propose a 6-week, double-blind randomised controlled trial combining M1 tDCS and PRT of the lower body in participants (n = 42) with moderate PD (Hoehn and Yahr scale score 2-4). Supervised lower body PRT combined with functional balance tasks will be performed three times per week with concurrent a-tDCS delivered at 2 mA for 20 minutes (a-tDCS group) or with sham tDCS (sham group). Control participants will receive standard care (control group). Outcome measures will include functional strength, gait speed and variability, balance, neurophysiological function at rest and during movement execution, and the UPDRS motor subscale, measured at baseline, 3 weeks (during), 6 weeks (post), and 9 weeks (retention). Ethical approval has been granted by the Deakin University Human Research Ethics Committee (project number 2015-014), and the trial has been registered with the Australian New Zealand Clinical Trials Registry (ACTRN12615001241527). DISCUSSION: This will be the first randomised controlled trial to combine PRT and a-tDCS targeting balance and gait in people with PD. The study will elucidate the functional, clinical and neurophysiological outcomes of combined PRT and a-tDCS. It is hypothesised that combined PRT and a-tDCS will significantly improve lower limb strength, postural sway, gait speed and stride variability compared with PRT with sham tDCS. Further, we hypothesise that pre-frontal cortex activation during dual-task cognitive and gait/balance activities will be reduced, and that M1 excitability and inhibition will be augmented, following the combined PRT and a-tDCS intervention. <br /
Thermal expansion and magnetostriction of pure and doped RAgSb2 (R = Y, Sm, La) single crystals
Data on temperature-dependent, anisotropic thermal expansion in pure and
doped RAgSb2 (R = Y, Sm, La) single crystals are presented. Using the Ehrenfest
relation and heat capacity measurements, uniaxial pressure derivatives for long
range magnetic ordering and charge density wave transition temperatures are
evaluated and compared with the results of the direct measurements under
hydrostatic pressure. In-plane and c-axis pressure have opposite effect on the
phase transitions in these materials, with in-plane effects being significantly
weaker. Quantum oscillations in magnetostriction were observed for the three
pure compounds, with the possible detection of new frequencies in SmAgSb2 and
LaAgSb2. The uniaxial (along the c-axis) pressure derivatives of the dominant
extreme orbits (beta) were evaluated for YAgSb2 and LaAgSb2
Evidence for Supercurrent Connectivity in Conglomerate Particles in NdFeAsO1-d
Here we use global and local magnetometry and Hall probe imaging to
investigate the electromagnetic connectivity of the superconducting current
path in the oxygen-deficient fluorine-free Nd-based oxypnictides. High
resolution transmission electron microscopy and scanning electron microscopy
show strongly-layered crystallites, evidence for a ~ 5nm amorphous oxide around
individual particles, and second phase neodymium oxide which may be responsible
for the large paramagnetic background at high field and at high temperatures.
From global magnetometry and electrical transport measurements it is clear
that there is a small supercurrent flowing on macroscopic sample dimensions
(mm), with a lower bound for the average (over this length scale) critical
current density of the order of 103 A/cm2. From magnetometry of powder samples
and local Hall probe imaging of a single large conglomerate particle ~120
microns it is clear that on smaller scales, there is better current
connectivity with a critical current density of the order of 5 x 104 A/cm2. We
find enhanced flux creep around the second peak anomaly in the magnetisation
curve and an irreversibility line significantly below Hc2(T) as determined by
ac calorimetry.Comment: 11 pages, 4 figure
Flexible provisioning of Web service workflows
Web services promise to revolutionise the way computational resources and business processes are offered and invoked in open, distributed systems, such as the Internet. These services are described using machine-readable meta-data, which enables consumer applications to automatically discover and provision suitable services for their workflows at run-time. However, current approaches have typically assumed service descriptions are accurate and deterministic, and so have neglected to account for the fact that services in these open systems are inherently unreliable and uncertain. Specifically, network failures, software bugs and competition for services may regularly lead to execution delays or even service failures. To address this problem, the process of provisioning services needs to be performed in a more flexible manner than has so far been considered, in order to proactively deal with failures and to recover workflows that have partially failed. To this end, we devise and present a heuristic strategy that varies the provisioning of services according to their predicted performance. Using simulation, we then benchmark our algorithm and show that it leads to a 700% improvement in average utility, while successfully completing up to eight times as many workflows as approaches that do not consider service failures
The World Food Problem
The problem of obtaining sufficient food has plagued man since his beginning. Despite many advances in science and technology during the 20th century, the problem is still acute today
Thermal tides in the Martian middle atmosphere as seen by the Mars Climate Sounder
The first systematic observations of the middle atmosphere of Mars (35–80km) with the Mars Climate Sounder (MCS) show dramatic patterns of diurnal thermal variation, evident in retrievals of temperature and water ice opacity. At the time of writing, the data set of MCS limb retrievals is sufficient for spectral analysis within a limited range of latitudes and seasons. This analysis shows that these thermal variations are almost exclusively associated with a diurnal thermal tide. Using a Martian general circulation model to extend our analysis, we show that the diurnal thermal tide dominates these patterns for all latitudes and all seasons
- …
