348 research outputs found
Shulamith Shahar, Women in a Medieval Heretical Sect: Agnes and Huguette and the Waldensians. Boydell Press, 2001
Shulamith Shahar, Women in a Medieval Heretical Sect: Agnes and Huguette and the Waldensians. Boydell Press, 2001
Submarine groundwater discharge to Tampa Bay : nutrient fluxes and biogeochemistry of the coastal aquifer
This paper is not subject to U.S. copyright. The definitive version was published in Marine Chemistry 104 (2007): 85-97, doi:10.1016/j.marchem.2006.10.012.To separately quantify the roles of fresh and saline submarine groundwater discharge (SGD), relative to that of rivers, in transporting nutrients to Tampa Bay, Florida, we used three approaches (Darcy's Law calculations, a watershed water budget, and a 222Rn mass-balance) to estimate rate of SGD from the Pinellas peninsula. Groundwater samples were collected in 69 locations in the coastal aquifer to examine biogeochemical conditions, nutrient concentrations and stoichiometry, and salinity structure. Salinity structure was also examined using stationary electrical resistivity measurements. The coastal aquifer along the Pinellas peninsula was chemically reducing in all locations sampled, and that condition influences nitrogen (N) form and mobility of N and PO43−. Concentrations of NH4+, PO43− and ratio of dissolved inorganic N (DIN) to PO43− were all related to measured oxidation/reduction potential (pε) of the groundwater. Ratio of DIN: PO43− was below Redfield ratio in both fresh and saline groundwater. Nitrogen occurred almost exclusively in reduced forms, NH4+ and dissolved organic nitrogen (DON), suggesting that anthropogenic N is exported from the watershed in those forms. In comparison to other SGD studies, rate of PO43− flux in the seepage zone (μM m− 2 d− 1) in Tampa Bay was higher than previous estimates, likely due to 1) high watershed population density, 2) chemically reducing conditions, and 3) high ion concentrations in fresh groundwater. Estimates of freshwater groundwater flux indicate that the ratio of groundwater discharge to stream flow is not, vert, similar 20 to 50%, and that the magnitudes of both the total dissolved nitrogen and PO43− loads due to fresh SGD are not, vert, similar 40 to 100% of loads carried by streams. Estimates of SGD based on radon inventories in near-shore waters were 2 to 5 times greater than the estimates of freshwater groundwater discharge, suggesting that brackish and saline SGD is also an important process in Tampa Bay and results in flux of regenerated N and P from sediment to surface water.This work was supported by a USGS Mendenhall
Postdoctoral Fellowship to K.D.K. and by the USGS
Coastal and Marine Geology Program's (CMGP) Tampa
Bay Project
Guidance on the Selection of Efficient Computational Methods for Multimedia Fate Models
Population dynamics of a pathogen: the conundrum of vivax malaria
Building a mathematical model of population dynamics of pathogens within their host involves considerations of factors similar to those in ecology, as pathogens can prey on cells in the host. But within the multicellular host, attacked cell types are integrated with other cellular systems, which in turn intervene in the infection. For example, immune responses attempt to sense and then eliminate or contain pathogens, and homeostatic mechanisms try to compensate for cell loss. This review focuses on modeling applied to malarias, diseases caused by single-cell eukaryote parasites that infect red blood cells, with special concern given to vivax malaria, a disease often thought to be benign (if sometimes incapacitating) because the parasite only attacks a small proportion of red blood cells, the very youngest ones. However, I will use mathematical modeling to argue that depletion of this pool of red blood cells can be disastrous to the host if growth of the parasite is not vigorously check by host immune responses. Also, modeling can elucidate aspects of new field observations that indicate that vivax malaria is more dangerous than previously thought
First-Order Contaminant Removal in the Hyporheic Zone of Streams: Physical Insights from a Simple Analytical Model
A simple analytical model is presented for the removal of stream-borne contaminants by hyporheic exchange across duned or rippled streambeds. The model assumes a steady-state balance between contaminant supply from the stream and first-order reaction in the sediment. Hyporheic exchange occurs by bed form pumping, in which water and contaminants flow into bed forms in high-pressure regions (downwelling zones) and out of bed forms in low-pressure regions (upwelling zones). Model-predicted contaminant concentrations are higher in downwelling zones than upwelling zones, reflecting the strong coupling that exists between transport and reaction in these systems. When flow-averaged, the concentration difference across upwelling and downwelling zones drives a net contaminant flux into the sediment bed proportional to the average downwelling velocity. The downwelling velocity is functionally equivalent to a mass transfer coefficient, and can be estimated from stream state variables including stream velocity, bed form geometry, and the hydraulic conductivity and porosity of the sediment. Increasing the mass transfer coefficient increases the fraction of streamwater cycling through the hyporheic zone (per unit length of stream) but also decreases the time contaminants undergo first-order reaction in the sediment. As a consequence, small changes in stream state variables can significantly alter the performance of hyporheic zone treatment systems
A comparison of polarized and non-polarized human endometrial monolayer culture systems on murine embryo development
BACKGROUND: Co-culture of embryos with various somatic cells has been suggested as a promising approach to improve embryo development. Despite numerous reports regarding the beneficial effects of epithelial cells from the female genital tract on embryo development in a co-culture system, little is known about the effect of these cells when being cultured under a polarized condition on embryo growth. Our study evaluated the effects of in vitro polarized cells on pre-embryo development. METHODS: Human endometrial tissue was obtained from uterine specimens excised at total hysterectomy performed for benign indications. Epithelial cells were promptly isolated and cultured either on extra-cellular matrix gel (ECM-Gel) coated millipore filter inserts (polarized) or plastic surfaces (non-polarized). The epithelial nature of the cells cultured on plastic was confirmed through immunohistochemistry, and polarization of cells cultured on ECM-Gel was evaluated by transmission electron microscopy (TEM). One or two-cell stage embryos of a superovulated NMRI mouse were then flushed and placed in culture with either polarized or non-polarized cells and medium alone. Development rates were determined for all embryos daily and statistically compared. At the end of the cultivation period, trophectoderm (TE) and inner cell mass (ICM) of expanded blastocysts from each group were examined microscopically. RESULTS: Endometrial epithelial cells cultured on ECM-Gel had a highly polarized columnar shape as opposed to the flattened shape of the cells cultured on a plastic surface. The two-cell embryos cultured on a polarized monolayer had a higher developmental rate than those from the non-polarized cells. There was no statistically significant difference; still, the blastocysts from the polarized monolayer, in comparison with the non-polarized group, had a significantly higher mean cell number. The development of one-cell embryos in the polarized and non-polarized groups showed no statistically significant difference. CONCLUSION: Polarized cells could improve in vitro embryo development from the two-cell stage more in terms of quality (increasing blastocyst cellularity) than in terms of developmental rate
Chlorin e6 mediated photodynamic inactivation for multidrug resistant Pseudomonas aeruginosa keratitis in mice in vivo
Variable effect of co-infection on the HIV infectivity: Within-host dynamics and epidemiological significance
<p>Abstract</p> <p>Background</p> <p>Recent studies have implicated viral characteristics in accounting for the variation in the HIV set-point viral load (spVL) observed among individuals. These studies have suggested that the spVL might be a heritable factor. The spVL, however, is not in an absolute equilibrium state; it is frequently perturbed by immune activations generated by co-infections, resulting in a significant amplification of the HIV viral load (VL). Here, we postulated that if the HIV replication capacity were an important determinant of the spVL, it would also determine the effect of co-infection on the VL. Then, we hypothesized that viral factors contribute to the variation of the effect of co-infection and introduce variation among individuals.</p> <p>Methods</p> <p>We developed a within-host deterministic differential equation model to describe the dynamics of HIV and malaria infections, and evaluated the effect of variations in the viral replicative capacity on the VL burden generated by co-infection. These variations were then evaluated at population level by implementing a between-host model in which the relationship between VL and the probability of HIV transmission per sexual contact was used as the within-host and between-host interface.</p> <p>Results</p> <p>Our within-host results indicated that the combination of parameters generating low spVL were unable to produce a substantial increase in the VL in response to co-infection. Conversely, larger spVL were associated with substantially larger increments in the VL. In accordance, the between-host model indicated that co-infection had a negligible impact in populations where the virus had low replicative capacity, reflected in low spVL. Similarly, the impact of co-infection increased as the spVL of the population increased.</p> <p>Conclusion</p> <p>Our results indicated that variations in the viral replicative capacity would influence the effect of co-infection on the VL. Therefore, viral factors could play an important role driving several virus-related processes such as the increment of the VL induced by co-infections. These results raise the possibility that biological differences could alter the effect of co-infection and underscore the importance of identifying these factors for the implementation of control interventions focused on co-infection.</p
Modeling denitrification in aquatic sediments
Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 93 (2009): 159-178, doi:10.1007/s10533-008-9270-z.Sediment denitrification is a major pathway of fixed nitrogen loss from aquatic systems. Due to technical difficulties in measuring this process and its spatial and temporal variability, estimates of local, regional and global denitrification have to rely on a combination of measurements and models. Here we review approaches to describing denitrification in aquatic sediments, ranging from mechanistic diagenetic models to empirical parameterizations of nitrogen fluxes across the sediment-water interface. We also present a compilation of denitrification measurements and ancillary data for different aquatic systems, ranging from freshwater to marine. Based on this data compilation we reevaluate published parameterizations of denitrification. We recommend that future models of denitrification use (1) a combination of mechanistic diagenetic models and measurements where bottom waters are temporally hypoxic or anoxic, and (2) the much simpler correlations between denitrification and sediment oxygen consumption for oxic bottom waters. For our data set, inclusion of bottom water oxygen and nitrate concentrations in a multivariate regression did not improve the statistical fit.Financial support for AEG to work on the manuscript came from
NSF NSF-DEB-0423565. KF, DB and DDT acknowledge support from NOAA CHRP
grant NA07NOS4780191
- …
