328 research outputs found
Evaluation of the zucker diabetic fatty (ZDF) rat as a model for human disease based on urinary peptidomic profiles
Representative animal models for diabetes-associated vascular complications are extremely relevant in assessing potential therapeutic drugs. While several rodent models for type 2 diabetes (T2D) are available, their relevance in recapitulating renal and cardiovascular features of diabetes in man is not entirely clear. Here we evaluate at the molecular level the similarity between Zucker diabetic fatty (ZDF) rats, as a model of T2D-associated vascular complications, and human disease by urinary proteome analysis. Urine analysis of ZDF rats at early and late stages of disease compared to age- matched LEAN rats identified 180 peptides as potentially associated with diabetes complications. Overlaps with human chronic kidney disease (CKD) and cardiovascular disease (CVD) biomarkers were observed, corresponding to proteins marking kidney damage (eg albumin, alpha-1 antitrypsin) or related to disease development (collagen). Concordance in regulation of these peptides in rats versus humans was more pronounced in the CVD compared to the CKD panels. In addition, disease-associated predicted protease activities in ZDF rats showed higher similarities to the predicted activities in human CVD. Based on urinary peptidomic analysis, the ZDF rat model displays similarity to human CVD but might not be the most appropriate model to display human CKD on a molecular level
Discovery and characterization of small molecules that target the Ral GTPase
The Ras-like GTPases RalA and B are important drivers of tumor growth and metastasis. Chemicals that block Ral function would be valuable as research tools and for cancer therapeutics. Here, we used protein structure analysis and virtual screening to identify drug-like molecules that bind a site on the GDP-form of Ral. Compounds RBC6, RBC8 and RBC10 inhibited Ral binding to its effector RalBP1, Ral-mediated cell spreading in murine fibroblasts and anchorage-independent growth of human cancer cell lines. Binding of RBC8 derivative BQU57 to RalB was confirmed by isothermal titration calorimetry, surface plasma resonance and 15N-HSQC NMR. RBC8 and BQU57 show selectivity for Ral relative to Ras or Rho and inhibit xenograft tumor growth similar to depletion of Ral by siRNA. Our results show the utility of structure-based discovery for development of therapeutics for Ral-dependent cancers
Multicentric validation of proteomic biomarkers in urine specific for diabetic nephropathy
Background: Urine proteome analysis is rapidly emerging as a tool for diagnosis and prognosis in disease states. For diagnosis of diabetic nephropathy (DN), urinary proteome analysis was successfully applied in a pilot study. The validity of the previously established proteomic biomarkers with respect to the diagnostic and prognostic potential was assessed on a separate set of patients recruited at three different European centers. In this case-control study of 148 Caucasian patients with diabetes mellitus type 2 and duration >= 5 years, cases of DN were defined as albuminuria >300 mg/d and diabetic retinopathy (n = 66). Controls were matched for gender and diabetes duration (n = 82).
Methodology/Principal Findings: Proteome analysis was performed blinded using high-resolution capillary electrophoresis coupled with mass spectrometry (CE-MS). Data were evaluated employing the previously developed model for DN. Upon unblinding, the model for DN showed 93.8% sensitivity and 91.4% specificity, with an AUC of 0.948 (95% CI 0.898-0.978). Of 65 previously identified peptides, 60 were significantly different between cases and controls of this study. In <10% of cases and controls classification by proteome analysis not entirely resulted in the expected clinical outcome. Analysis of patient's subsequent clinical course revealed later progression to DN in some of the false positive classified DN control patients.
Conclusions: These data provide the first independent confirmation that profiling of the urinary proteome by CE-MS can adequately identify subjects with DN, supporting the generalizability of this approach. The data further establish urinary collagen fragments as biomarkers for diabetes-induced renal damage that may serve as earlier and more specific biomarkers than the currently used urinary albumin
Proteomics as a quality control tool of pharmaceutical probiotic bacterial lysate products
Probiotic bacteria have a wide range of applications in veterinary and human therapeutics. Inactivated probiotics are complex samples and quality control (QC) should measure as many molecular features as possible. Capillary electrophoresis coupled to mass spectrometry (CE/MS) has been used as a multidimensional and high throughput method for the identification and validation of biomarkers of disease in complex biological samples such as biofluids. In this study we evaluate the suitability of CE/MS to measure the consistency of different lots of the probiotic formulation Pro-Symbioflor which is a bacterial lysate of heat-inactivated Escherichia coli and Enterococcus faecalis. Over 5000 peptides were detected by CE/MS in 5 different lots of the bacterial lysate and in a sample of culture medium. 71 to 75% of the total peptide content was identical in all lots. This percentage increased to 87–89% when allowing the absence of a peptide in one of the 5 samples. These results, based on over 2000 peptides, suggest high similarity of the 5 different lots. Sequence analysis identified peptides of both E. coli and E. faecalis and peptides originating from the culture medium, thus confirming the presence of the strains in the formulation. Ontology analysis suggested that the majority of the peptides identified for E. coli originated from the cell membrane or the fimbrium, while peptides identified for E. faecalis were enriched for peptides originating from the cytoplasm. The bacterial lysate peptides as a whole are recognised as highly conserved molecular patterns by the innate immune system as microbe associated molecular pattern (MAMP). Sequence analysis also identified the presence of soybean, yeast and casein protein fragments that are part of the formulation of the culture medium. In conclusion CE/MS seems an appropriate QC tool to analyze complex biological products such as inactivated probiotic formulations and allows determining the similarity between lots
A Distinct Urinary Biomarker Pattern Characteristic of Female Fabry Patients That Mirrors Response to Enzyme Replacement Therapy
Female patients affected by Fabry disease, an X-linked lysosomal storage disorder, exhibit a wide spectrum of symptoms, which renders diagnosis, and treatment decisions challenging. No diagnostic test, other than sequencing of the alpha-galactosidase A gene, is available and no biomarker has been proven useful to screen for the disease, predict disease course and monitor response to enzyme replacement therapy. Here, we used urine proteomic analysis based on capillary electrophoresis coupled to mass spectrometry and identified a biomarker profile in adult female Fabry patients. Urine samples were taken from 35 treatment-naive female Fabry patients and were compared to 89 age-matched healthy controls. We found a diagnostic biomarker pattern that exhibited 88.2% sensitivity and 97.8% specificity when tested in an independent validation cohort consisting of 17 treatment-naive Fabry patients and 45 controls. The model remained highly specific when applied to additional control patients with a variety of other renal, metabolic and cardiovascular diseases. Several of the 64 identified diagnostic biomarkers showed correlations with measures of disease severity. Notably, most biomarkers responded to enzyme replacement therapy, and 8 of 11 treated patients scored negative for Fabry disease in the diagnostic model. In conclusion, we defined a urinary biomarker model that seems to be of diagnostic use for Fabry disease in female patients and may be used to monitor response to enzyme replacement therapy
Elucidating the role of Agl in bladder carcinogenesis by generation and characterization of genetically engineered mice
Amylo-\u3b1-1,6-glucosidase,4-\u3b1-glucanotransferase (AGL) is an enzyme primarily responsible for glycogen debranching. Germline mutations lead to glycogen storage disease type III (GSDIII). We recently found AGL to be a tumor suppressor in xenograft models of human bladder cancer (BC) and low levels of AGL expression in BC are associated with poor patient prognosis. However, the impact of low AGL expression on the susceptibility of normal bladder to carcinogenesis is unknown. We address this gap by developing a germline Agl knockout (Agl-/-) mouse that recapitulates biochemical and histological features of GSDIII. Agl-/- mice exposed to N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) had a higher BC incidence compared with wild-type mice (Agl+/+). To determine if the increased BC incidence observed was due to decreased Agl expression in the urothelium specifically, we developed a urothelium-specific conditional Agl knockout (Aglcko) mouse using a Uroplakin II-Cre allele. BBN-induced carcinogenesis experiments repeated in Aglcko mice revealed that Aglcko mice had a higher BC incidence than control (Aglfl/fl) mice. RNA sequencing revealed that tumors from Agl-/- mice had 19 differentially expressed genes compared with control mice. An 'Agl Loss' gene signature was developed and found to successfully stratify normal and tumor samples in two BC patient datasets. These results support the role of AGL loss in promoting carcinogenesis and provide a rationale for evaluating Agl expression levels, or Agl Loss gene signature scores, in normal urothelium of populations at risk of BC development such as older male smokers
Role of bladder cancer metabolic reprogramming in the effectiveness of immunotherapy
Metabolic reprogramming (MR) is an upregulation of biosynthetic and bioenergetic pathways to satisfy increased energy and metabolic building block demands of tumors. This includes glycolytic activity, which deprives the tumor microenvironment (TME) of nutrients while increasing extracellular lactic acid. This inhibits cytotoxic immune activity either via direct metabolic competition between cancer cells and cytotoxic host cells or by the production of immune-suppressive metabolites such as lactate or kynurenine. Since immunotherapy is a major treatment option in patients with metastatic urothelial carcinoma (UC), MR may have profound implications for the success of such therapy. Here, we review how MR impacts host immune response to UC and the impact on immunotherapy response (including checkpoint inhibitors, adaptive T cell therapy, T cell activation, antigen presentation, and changes in the tumor microenvironm
Molecular Biomarkers of Response to PD-1/PD-L1 Immune Checkpoint Blockade in Advanced Bladder Cancer
Background: The activity of PD-1/PD-L1 inhibitors in the treatment of advanced bladder cancer (BC) is promising for many
patients. However, a subset of patients do not benefit from treatment, thus leading to an effort to better identify predictive
molecular biomarkers of response.
Objective: To conduct a systematic review of the literature on predictive molecular biomarkers associated with response
to PD-1 and PD-L1 inhibitors in advanced bladder cancer, defined as locally-advanced, unresectable, or metastatic (mBC)
disease.
Methods: A search of the literature was performed using Embase (1947 – January 2019), Medline (1946 – January 2019), and
EBM Reviews for Cochrane Central Register of Controlled Trials (as of December 2018). Studies examining the association
of molecular biomarkers with clinical outcome in BC treated with PD-1 or PD-L1 monotherapy were included. Outcomes
of interest were overall survival (OS), cancer-specific survival (CSS), progression-free survival (PFS), duration of response,
and objective response rate (ORR).
Results: Using the study search criteria, 899 unique abstract citations were found, of which 834 did not meet the eligibility
criteria. Full text of the remaining 65 citations were screened, and 50 studies excluded, including 18 review articles. Eight
additional studies from the bibliography of the review papers were included, making a total of 23 studies. Five PD-1 / PD-L1
antibodies have been tested in BC immunohistochemistry (IHC). These studies used different expression scoring criteria
and generally had poor ability to discriminate likelihood for response. Overall, the data suggests CD8+ T cell infiltration is
necessary to mediate an antitumor immune response, but other immune cell populations, such as neutrophils may suppress T
cell-mediated immunity and efficacy of PD-1/PD-L1 blockade. An IFN signature is a promising predictor, but there needs
to be consensus on the optimal gene panel composition, and prospective validation. Tumor mutation burden (TMB) is a
promising predictor in six studies reporting on 1200 patients, but there is not a consensus on the optimal definition of “high
TMB”. Detection of T cell receptor (TCR) clonal expansion has only been conducted in small studies and so its predictive
value remains inconclusive. Epithelial-mesenchymal transformation (EMT) and transforming growth factor (TGF) are
associated with poor prognosis and possibly intrinsic resistance to PD-1/PD-L1 checkpoint blockade, but more work needs
to be done to build upon and confirm the initial findings. Conclusions: Currently no molecular biomarker is sufficiently mature for routine clinical use, while some candidates, or a
combination show great promise and need further study
- …
