227 research outputs found

    Crowding Promotes the Switch from Hairpin to Pseudoknot Conformation in Human Telomerase RNA

    Full text link
    Formation of a pseudoknot in the conserved RNA core domain in the ribonucleoprotein human telomerase is required for function. In vitro experiments show that the pseudoknot (PK) is in equilibrium with an extended hairpin (HP) structure. We use molecular simulations of a coarse-grained model, which reproduces most of the salient features of the experimental melting profiles of PK and HP, to show that crowding enhances the stability of PK relative to HP in the wild type and in a mutant associated with dyskeratosis congenita. In monodisperse suspensions, small crowding particles increase the stability of compact structures to a greater extent than larger crowders. If the sizes of crowders in a binary mixture are smaller than the unfolded RNA, the increase in melting temperature due to the two components is additive. In a ternary mixture of crowders that are larger than the unfolded RNA, which mimics the composition of ribosome, large enzyme complexes and proteins in E. coli, the marginal increase in stability is entirely determined by the smallest component. We predict that crowding can restore partially telomerase activity in mutants, which dramatically decrease the PK stability.Comment: File "JACS_MAIN_archive_PDF_from_DOC.pdf" (PDF created from DOC) contains the main text of the paper File JACS_SI_archive.tex + 7 figures are the supplementary inf

    FUSE: Lightweight Guaranteed Distributed Failure Notification

    Get PDF
    FUSE is a lightweight failure notification service for building distributed systems. Distributed systems built with FUSE are guaranteed that failure notifications never fail. Whenever a failure notification is triggered, all live members of the FUSE group will hear a notification within a bounded period of time, irrespective of node or communication failures. In contrast to previous work on failure detection, the responsibility for deciding that afailure has occurred is shared between the FUSE service and the distributed application. This allows applications to implement their own definitions of failure. Our experience building a scalable distributed event delivery system on an overlay network has convinced us of the usefulness of this service. Our results demonstrate that the network costs of each FUSE group can be small; in particular, our overlay network implementation requires no additional liveness-verifying ping traffic beyond that already needed to maintain the overlay, making the steady state network load independent of the number of active FUSE groups

    A single-molecule assay for telomerase structure-function analysis

    Get PDF
    The activity of the telomerase ribonucleoprotein enzyme is essential for the maintenance of genome stability and normal cell development. Despite the biomedical importance of telomerase activity, detailed structural models for the enzyme remain to be established. Here we report a single-molecule assay for direct structural analysis of catalytically active telomerase enzymes. In this assay, oligonucleotide hybridization was used to probe the primer-extension activity of individual telomerase enzymes with single nucleotide sensitivity, allowing precise discrimination between inactive, active and processive enzyme binding events. FRET signals from enzyme molecules during the active and processive binding events were then used to determine the global organization of telomerase RNA within catalytically active holoenzymes. Using this assay, we have identified an active conformation of telomerase among a heterogeneous population of enzymes with distinct structures

    The Telomerase Database

    Get PDF
    Telomerase is a ribonucleoprotein enzyme that extends DNA at the chromosome ends in most eukaryotes. Since 1985, telomerase has been studied intensively and components of the telomerase complex have been identified from over 160 eukaryotic species. In the last two decades, there has been a growing interest in studying telomerase owing to its vital role in chromosome stability and cellular immortality. To keep up with the remarkable explosion of knowledge about telomerase, we compiled information related to telomerase in an exhaustive database called the Telomerase Database (http://telomerase.asu.edu/). The Telomerase Database provides comprehensive information about (i) sequences of the RNA and protein subunits of telomerase, (ii) sequence alignments based on the phylogenetic relationship and structure, (iii) secondary structures of the RNA component and tertiary structures of various subunits of telomerase, (iv) mutations of telomerase components found in human patients and (v) active researchers who contributed to the wealth of current knowledge on telomerase. The information is hierarchically organized by the components, i.e. the telomerase reverse transcriptase (TERT), telomerase RNA (TR) and other telomerase-associated proteins. The Telomerase Database is a useful resource especially for researchers who are interested in investigating the structure, function, evolution and medical relevance of the telomerase enzyme

    Einstein's quantum theory of the monatomic ideal gas: non-statistical arguments for a new statistics

    Full text link
    In this article, we analyze the third of three papers, in which Einstein presented his quantum theory of the ideal gas of 1924-1925. Although it failed to attract the attention of Einstein's contemporaries and although also today very few commentators refer to it, we argue for its significance in the context of Einstein's quantum researches. It contains an attempt to extend and exhaust the characterization of the monatomic ideal gas without appealing to combinatorics. Its ambiguities illustrate Einstein's confusion with his initial success in extending Bose's results and in realizing the consequences of what later became to be called Bose-Einstein statistics. We discuss Einstein's motivation for writing a non-combinatorial paper, partly in response to criticism by his friend Ehrenfest, and we paraphrase its content. Its arguments are based on Einstein's belief in the complete analogy between the thermodynamics of light quanta and of material particles and invoke considerations of adiabatic transformations as well as of dimensional analysis. These techniques were well-known to Einstein from earlier work on Wien's displacement law, Planck's radiation theory, and the specific heat of solids. We also investigate the possible role of Ehrenfest in the gestation of the theory.Comment: 57 pp

    Single-Molecule Analysis of the Human Telomerase RNA·Dyskerin Interaction and the Effect of Dyskeratosis Congenita Mutations†

    Get PDF
    It has been proposed that human telomerase RNA (hTR) interacts with dyskerin, prior to assembly of the telomerase holoenzyme. The direct interaction of dyskerin and hTR has not been demonstrated and is an experimentally challenging research problem because of difficulties in expressing and purifying dyskerin in quantities that are useful for biophysical analysis. By orthogonally labeling dyskerin and hTR, we have been able to employ single-molecule two-color coincidence detection (TCCD) to observe directly the formation of a dyskerin·hTR complex. By systematic deletion of hTR subdomains, we have gained insights into the RNA sites required for interaction with dyskerin. We then investigated mutated forms of hTR and dyskerin that are associated with dyskeratosis congenita (DC), on the basis of clinical genetics studies, for their effects on the dyskerin·hTR interaction. Dyskerin mutations associated with X-linked DC resulted in significant impairment of the dyskerin·hTR interaction, whereas mutations in hTR associated with autosomal dominant (AD) DC did not affect the interaction. We propose that disruption of the dyskerin·hTR interaction may contribute to X-linked DC

    Equilibrium between radiation and matter for classical relativistic multiperiodic systems. II. Study of radiative equilibrium with Rayleigh-Jeans radiation

    Get PDF
    We continue the study of the problem of equilibrium between radiation and classical relativistic systems begun previously Phys. Rev. D 27 1254 (1983). We consider the emission and absorption of energy by a relativistic pointlike particle immersed in a Rayleigh-Jeans radiation field. The particle is acted upon by a force which, if alone, would produce a multiply periodic motion. It is shown that radiative balance at each frequency holds. A discussion is given of the results reported in both papers

    Annexin A2 Binds RNA and Reduces the Frameshifting Efficiency of Infectious Bronchitis Virus

    Get PDF
    Annexin A2 (ANXA2) is a protein implicated in diverse cellular functions, including exocytosis, DNA synthesis and cell proliferation. It was recently proposed to be involved in RNA metabolism because it was shown to associate with some cellular mRNA. Here, we identified ANXA2 as a RNA binding protein (RBP) that binds IBV (Infectious Bronchitis Virus) pseudoknot RNA. We first confirmed the binding of ANXA2 to IBV pseudoknot RNA by ultraviolet crosslinking and showed its binding to RNA pseudoknot with ANXA2 protein in vitro and in the cells. Since the RNA pseudoknot located in the frameshifting region of IBV was used as bait for cellular RBPs, we tested whether ANXA2 could regulate the frameshfting of IBV pseudoknot RNA by dual luciferase assay. Overexpression of ANXA2 significantly reduced the frameshifting efficiency from IBV pseudoknot RNA and knockdown of the protein strikingly increased the frameshifting efficiency. The results suggest that ANXA2 is a cellular RBP that can modulate the frameshifting efficiency of viral RNA, enabling it to act as an anti-viral cellular protein, and hinting at roles in RNA metabolism for other cellular mRNAs

    Human Telomerase Reverse Transcriptase (hTERT) Q169 Is Essential for Telomerase Function In Vitro and In Vivo

    Get PDF
    BACKGROUND:Telomerase is a reverse transcriptase that maintains the telomeres of linear chromosomes and preserves genomic integrity. The core components are a catalytic protein subunit, the telomerase reverse transcriptase (TERT), and an RNA subunit, the telomerase RNA (TR). Telomerase is unique in its ability to catalyze processive DNA synthesis, which is facilitated by telomere-specific DNA-binding domains in TERT called anchor sites. A conserved glutamine residue in the TERT N-terminus is important for anchor site interactions in lower eukaryotes. The significance of this residue in higher eukaryotes, however, has not been investigated. METHODOLOGY/PRINCIPAL FINDINGS:To understand the significance of this residue in higher eukaryotes, we performed site-directed mutagenesis on human TERT (hTERT) Q169 to create neutral (Q169A), conservative (Q169N), and non-conservative (Q169D) mutant proteins. We show that these mutations severely compromise telomerase activity in vitro and in vivo. The functional defects are not due to abrogated interactions with hTR or telomeric ssDNA. However, substitution of hTERT Q169 dramatically impaired the ability of telomerase to incorporate nucleotides at the second position of the template. Furthermore, Q169 mutagenesis altered the relative strength of hTERT-telomeric ssDNA interactions, which identifies Q169 as a novel residue in hTERT required for optimal primer binding. Proteolysis experiments indicate that Q169 substitution alters the protease-sensitivity of the hTERT N-terminus, indicating that a conformational change in this region of hTERT is likely critical for catalytic function. CONCLUSIONS/SIGNIFICANCE:We provide the first detailed evidence regarding the biochemical and cellular roles of an evolutionarily-conserved Gln residue in higher eukaryotes. Collectively, our results indicate that Q169 is needed to maintain the hTERT N-terminus in a conformation that is necessary for optimal enzyme-primer interactions and nucleotide incorporation. We show that Q169 is critical for the structure and function of human telomerase, thereby identifying a novel residue in hTERT that may be amenable to therapeutic intervention
    corecore