623 research outputs found

    Quantum Metropolis Sampling

    Get PDF
    The original motivation to build a quantum computer came from Feynman who envisaged a machine capable of simulating generic quantum mechanical systems, a task that is believed to be intractable for classical computers. Such a machine would have a wide range of applications in the simulation of many-body quantum physics, including condensed matter physics, chemistry, and high energy physics. Part of Feynman's challenge was met by Lloyd who showed how to approximately decompose the time-evolution operator of interacting quantum particles into a short sequence of elementary gates, suitable for operation on a quantum computer. However, this left open the problem of how to simulate the equilibrium and static properties of quantum systems. This requires the preparation of ground and Gibbs states on a quantum computer. For classical systems, this problem is solved by the ubiquitous Metropolis algorithm, a method that basically acquired a monopoly for the simulation of interacting particles. Here, we demonstrate how to implement a quantum version of the Metropolis algorithm on a quantum computer. This algorithm permits to sample directly from the eigenstates of the Hamiltonian and thus evades the sign problem present in classical simulations. A small scale implementation of this algorithm can already be achieved with today's technologyComment: revised versio

    Preparing projected entangled pair states on a quantum computer

    Get PDF
    We present a quantum algorithm to prepare injective PEPS on a quantum computer, a class of open tensor networks representing quantum states. The run-time of our algorithm scales polynomially with the inverse of the minimum condition number of the PEPS projectors and, essentially, with the inverse of the spectral gap of the PEPS' parent Hamiltonian.Comment: 5 pages, 1 figure. To be published in Physical Review Letters. Removed heuristics, refined run-time boun

    Nonnegative solutions of algebraic Riccati equations

    Get PDF
    AbstractNonnegative Hermitian solutions of various types of continuous and discrete algebraic Riccati equations are studied. The Hamiltonian is considered with respect to two different indefinite scalar products. For the set of nonnegative solutions the order structure and the topology of the set and the stability of solutions is treated. For general Hermitian solutions a method to compute the inertia is given. Although most attention is payed to the classical types arising from LQ optimal control theory, the case where the quadratic term has an indefinite coefficient is studied as well

    Resonantly enhanced pair production in a simple diatomic model

    Full text link
    A new mechanism for the production of electron-positron pairs from the interaction of a laser field and a fully stripped diatomic molecule in the tunneling regime is presented. When the laser field is turned off, the Dirac operator has resonances in both the positive and the negative energy continua while bound states are in the mass gap. When this system is immersed in a strong laser field, the resonances move in the complex energy plane: the negative energy resonances are pushed to higher energies while the bound states are Stark shifted. It is argued here that there is a pair production enhancement at the crossing of resonances by looking at a simple 1-D model: the nuclei are modeled simply by Dirac delta potential wells while the laser field is assumed to be static and of finite spatial extent. The average rate for the number of electron-positron pairs produced is evaluated and the results are compared to the single nucleus and to the free cases. It is shown that positrons are produced by the Resonantly Enhanced Pair Production (REPP) mechanism, which is analogous to the resonantly enhanced ionization of molecular physics. This phenomenon could be used to increase the number of pairs produced at low field strength, allowing the study of the Dirac vacuum.Comment: 11 pages, 4 figure

    Supervised learning with quantum enhanced feature spaces

    Full text link
    Machine learning and quantum computing are two technologies each with the potential for altering how computation is performed to address previously untenable problems. Kernel methods for machine learning are ubiquitous for pattern recognition, with support vector machines (SVMs) being the most well-known method for classification problems. However, there are limitations to the successful solution to such problems when the feature space becomes large, and the kernel functions become computationally expensive to estimate. A core element to computational speed-ups afforded by quantum algorithms is the exploitation of an exponentially large quantum state space through controllable entanglement and interference. Here, we propose and experimentally implement two novel methods on a superconducting processor. Both methods represent the feature space of a classification problem by a quantum state, taking advantage of the large dimensionality of quantum Hilbert space to obtain an enhanced solution. One method, the quantum variational classifier builds on [1,2] and operates through using a variational quantum circuit to classify a training set in direct analogy to conventional SVMs. In the second, a quantum kernel estimator, we estimate the kernel function and optimize the classifier directly. The two methods present a new class of tools for exploring the applications of noisy intermediate scale quantum computers [3] to machine learning.Comment: Fixed typos, added figures and discussion about quantum error mitigatio

    Dressed test particles, oscillation centres and pseudo-orbits

    Full text link
    A general semi-analytical method for accurate and efficient numerical calculation of the dielectrically screened ("dressed") potential around a non-relativistic test particle moving in an isotropic, collisionless, unmagnetised plasma is presented. The method requires no approximations and is illustrated using results calculated for two cases taken from the MSc thesis of the first author: test particles with velocities above and below the ion sound speed in plasmas with Maxwellian ions and warm electrons. The idea that the fluctuation spectrum of a plasma can be described as a superposition of the fields around \emph{non-interacting} dressed test particles is an expression of the quasiparticle concept, which has also been expressed in the development of the oscillation-centre and pseudo-orbit formalisms.Comment: 14 pages to Plasma Physics and Controlled Fusion for publication with a cluster of papers associated with workshop Stability and Nonlinear Dynamics of Plasmas, October 31, 2009 Atlanta, GA on occasion of the 65th birthday of R.L. Dewar. Version 2: Reference [27] added in Sec. 5. Version 3: Revised in response to referee

    Entropic uncertainty measures for large dimensional hydrogenic systems

    Get PDF
    The entropic moments of the probability density of a quantum system in position and momentum spaces describe not only some fundamental and/or experimentally accessible quantities of the system but also the entropic uncertainty measures of R\xc3\xa9nyi type, which allow one to find the most relevant mathematical formalizations of the position-momentum Heisenberg\'s uncertainty principle, the entropic uncertainty relations. It is known that the solution of difficult three-dimensional problems can be very well approximated by a series development in 1/D in similar systems with a nonstandard dimensionality D; moreover, several physical quantities of numerous atomic and molecular systems have been numerically shown to have values in the large- D limit comparable to the corresponding ones provided by the three-dimensional numerical self-consistent field methods. The D-dimensional hydrogenic atom is the main prototype of the physics of multidimensional many-electron systems. In this work, we rigorously determine the leading term of the R\xc3\xa9nyi entropies of the Ddimensional hydrogenic atom at the limit of large D. As a byproduct, we show that our results saturate the known position-momentum R\xc3\xa9nyi-entropy-based uncertainty relations

    Sequential Strong Measurements and Heat Vision

    Get PDF
    We study scenarios where a finite set of non-demolition von-Neumann measurements are available. We note that, in some situations, repeated application of such measurements allows estimating an infinite number of parameters of the initial quantum state, and illustrate the point with a physical example. We then move on to study how the system under observation is perturbed after several rounds of projective measurements. While in the finite dimensional case the effect of this perturbation always saturates, there are some instances of infinite dimensional systems where such a perturbation is accumulative, and the act of retrieving information about the system increases its energy indefinitely (i.e., we have `Heat Vision'). We analyze this effect and discuss a specific physical system with two dichotomic von-Neumann measurements where Heat Vision is expected to show.Comment: See the Appendix for weird examples of heat visio

    Landau-Zener-St\"uckelberg interferometry in pair production from counterpropagating lasers

    Full text link
    The rate of electron-positron pair production in linearly polarized counter-propagating lasers is evaluated from a recently discovered solution of the time-dependent Dirac equation. The latter is solved in momentum space where it is formally equivalent to the Schr\"odinger equation describing a strongly driven two-level system. The solution is found from a simple transformation of the Dirac equation and is given in compact form in terms of the doubly-confluent Heun's function. By using the analogy with the two-level system, it is shown that for high-intensity lasers, pair production occurs through periodic non-adiabatic transitions when the adiabatic energy gap is minimal. These transitions give rise to an intricate interference pattern in the pair spectrum, reminiscent of the Landau-Zener-St\"uckelberg phenomenon in molecular physics: the accumulated phase result in constructive or destructive interference. The adiabatic-impulse model is used to study this phenomenon and shows an excellent agreement with the exact result.Comment: 22 pages, 7 figure

    Power Utility Maximization in Discrete-Time and Continuous-Time Exponential Levy Models

    Full text link
    Consider power utility maximization of terminal wealth in a 1-dimensional continuous-time exponential Levy model with finite time horizon. We discretize the model by restricting portfolio adjustments to an equidistant discrete time grid. Under minimal assumptions we prove convergence of the optimal discrete-time strategies to the continuous-time counterpart. In addition, we provide and compare qualitative properties of the discrete-time and continuous-time optimizers.Comment: 18 pages, to appear in Mathematical Methods of Operations Research. The final publication is available at springerlink.co
    • …
    corecore