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ABSTRACT 

Nonnegative Hermitian solutions of various types of continuous and discrete 
algebraic Riccati equations are studied. The Hamiltonian is considered with respect to 
two different indefinite scalar products. For the set of nonnegative solutions the order 
structure and the topology of the set and the stability of solutions is treated. For 
general Hermitian solutions a method to compute the inertia is given. Although 
most attention is payed to the classical types arising from LQ optimal control theory, 
the case where the quadratic term has an indefinite coefficient is studied as well. 
0 Elsevier Science Inc., 1997 

1. INTRODUCTION AND PRELIMINARIES 

In this paper we consider Riccati equations of the type 

XBJB*X - XA - A*X - C*C = 0 (1.1) 
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where A and X are n X n matrices, B is an n X m matrix, C is an k X n 
matrix, and finally, J is ‘an invertible m X m Hermitian matrix. We are 
particularly interested in Hermitian nonnegative solutions of (1.11, which play 
a role in many applications. We mention the theory of H”-control, where the 
solution of the so-called standard problem is given in terms of nonnegative 
solutions of two Riccati equations of the type (1.1) (see, e.g., [71), inner-outer 
factorization of rational matrix-valued functions, where in particular also the 
case C = 0 is of interest (see, e.g., [5, 1411, and finally, the theory of 
LQ-optimal control, where the case J = Z is of prime importance. The latter 
case has been extensively studied; we refer to [12, 15, 20, 271 and the 
references given there. The discrete-time counterpart of the theory of 
nonnegative solutions of algebraic Riccati equations is less developed. 

Our approach relies heavily on notions and results from the theory of 
indefinite inner product spaces. In this paper the standard Hilbert-space 
inner product on C’ (or on czn) will be denoted by ( x, y >, for vectors r, 
y E C” (x, y E ,“). If G = G* is an n x n invertible matrix, then the 
number (Gx, y) is defined to be the G-inner product of the vectors x, 
y E C”. A vector x is called G-neutral (G-negative, G-positive, G-nonnega- 
tive, G-nonpositive) if (Gr, r > = 0 ( < 0, > 0, 2 0, I 0). In general the 
G-inner product is indefinite in the sense that such G-neutral and G-negative 
vectors exist. A subspace J% is called G-neutral (G-nonnegative, G-nonposi- 
tive) if all vectors x E J% are G-neutral (G-nonnegative, G-nonpositive). It is 
a general fact (see [lo, Theorem 1.1.31) that the maximal possible dimension 
of a G-nonnegative (G-nonpositive) subspace equals the number of positive 
eigenvalues of G (the number of negative eigenvalues of G, respectively). 
The maximal possible dimension of a G-neutral subspace equals the minimal 
of these two number of positive and negative eigenvalues of G; see [lo, 
Theorem 1.1.51. A G-nonnegative subspace of maximal possible dimension is 
called a maximal G-nonnegative subspace, and analogously maximal G-non- 
positive subspaces 
1X 

and maximal G-neutral subspaces are defined. If 
i,“‘, XJ is a basis of some subspace A, then the matrix 

(Gx,, ~1) .** (Gx,, xl) ’ 

1 : (Gq’, x,.) ... (Gq’, xr) / 

is called the Gram matrix of G with respect to the basis {x, , . . . , x_} of A. 
For more background information in this area, see [2], [IO], or [l3]. ‘_ 

In connection with the Riccati. equation (1.11, we shall consider 
associated Hamiltonian 

the 
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Introduce also the matrices 

Observe that 

i.e., the matrix iH is self-adjoint in the indefinite inner product defined on 
a=“” by the invertible Hermitian matrix iJ,. Also observe that 

i(lJf + H*J,) = ( -;*” _&* j. (1.4) 

For the particular case J = Z this says that iH is dissipative in the indefinite 
inner product defined on c2” by the invertible Hermitian matrix -J2, i.e., 
(1/2i) [J,(iH) - (iH)*J,] < 0. F or matrices which are self-adjoint or dissi- 
pative in an indefinite inner product there exist subspaces that are at the 
same time invariant with respect to the self-adjoint or dissipative matrix, and 
maximal nonnegative, maximal nonpositive, or neutral with respect to the 
indefinite inner product (see, e.g., [13]). F or a constructive approach and a 
parametrization of all such subspaces, see [lo], [19], and [21] for the self-ad- 
joint case, and [25] for the dissipative case. 

That these invariant subspaces are of importance is seen by the following 
observations. Let X be an n X n matrix, and form the subspace 

.L=Im 4 
i 1 

(1.S) 

of czn. Then X is a solution of (1.1) (not necessarily Hermitian) if and only if 
the subspace J% is H-invariant. Furthermore, X is Hermitian if and only if 
the subspace _M is ]r-neutral, and as dim M = n, this can be rephrased as 
]@=,a%~. Replacing, if necessary, the matrix A by A + (YZ for (Y E iR 
large enough, we may assume that H is invertible. Then the statement 
Ii_& =M 1 is equivalent to (Ji H)d =.&I . In [17] the latter property is 
used to give a parametrization of all Hermitian solutions for the case J = Z 
and (A, B) controllable. (However, there the term C*C is replaced by an 
arbitrary Hermitian matrix.) It is proved there that every n-dimensional 
Ii-neutral H-invariant subspace & necessarily is of the form (1.5) for some 
Hermitian solution X of the Riccati equation. 
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Finally, the matrix X is in addition also nonnegative if and only if the 
subspace LZ? is J,-nonnegative. Indeed, for x in @” we have 

(.L($ (;)r)=2ax,d. (1.6) 

It is this simple observation which will play a major role in our analysis. With 
our choice of J1 and JZ any maximal J,-nonnegative (I,-nonpositive, Ji-neu- 
tral> subspace has dimension n. 

The above considerations are summarized in the following proposition. 

PROPOSITION 1.1. Zf X is a nonnegative Hermitian solution of (l.l), then 
the subspace L in (1.5) is H-invariant, satisfies J1d =A’ (i.e., & is 
maximal J,-neutral), and is maximal I,-nonnegative. Conversely, if X is an 
n X n matrix and the subspace A from (1.5) is H-invariant, J,-neutral, and 
J,-nonnegative, then X is a nonnegative Hermitian solution of (1.1). 

In conclusion, if we are interested in nonnegative solutions of Riccati 
equation, then we are interested in n-dimensional subspaces of c2” that are 
H-invariant, J,-neutral, and J,-nonnegative. 

In the note, the open left and right complex half planes will be denoted 
by @1 and @,, respectively. For any n X n matrix D and any set S c @ the 
notation 

9( D, S) = span{Ker (D 

is used for the corresponding spectral 
where A is n X n and B is n X m, is 

Im( B AB **a 

- h)“lh E CT(D) u s} 

subspace. A pair of matrices (A, B), 
called controllable if 

A”-lB) = @“. 

For a pair of matrices (C, A), where C is k X n and A is n X n, the 
subspace 7 is the maximal A-invariant subspace contained in Ker C. The 
subspace 7 contains the subspaces V; = VnZ(A, C,>, 70 = yn 

SP(A, iR), F< = T~TLZ(A,@~), and Y5 = YnS(A, Cr U i@. If y= {O), 
then the pair (C, A) is called observable. Consequently, the pair CC, A) is 
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observable if and only if 

321 

= {O}. 

Throughout the paper the projection P : a)‘” -+ @” given by P = (I 0) will 
be used together with the corresponding canonical embedding of @” into 
c2” given by P* = (I O>r. 

The paper consists, besides this introduction, of seven sections. In Section 
2 the general case is considered. Here, only the Hermitian solution which is 
stab&zing for the pair (A, -BJB*) is studied, i.e., the solution X = X* for 
which A - BJB*X has all its eigenvalues in the open left half plane. The 
question of nonnegativity of the stabilizing solution is reduced to the same 
question for a Riccati equation in fewer dimensions. The third section deals 
with the case C = 0. Here again, only the stabilizing solution is considered. 
This particular case allows a very explicit criterion for nonnegativity of the 
stabilizing solution in terms of certain Jordan chains of the matrix A. The rest 
of the paper treats the case J = I. It is assumed that the pair (A, B) is 
controllable. The full set of nonnegative solutions is considered. In Section 4 
a parametrization of the set is given and relations with parametrizations that 
exist in the literature are discussed. In Section 5 applications are given to 
topics like isolatedness, order structure, and stability. In Section 6 the inertia 
of Hermitian solutions of (1.1) with J = Z is studied. Finally, in Sections 7 
and 8, the discrete-time counterpart of the results of the Sections 4. 5, and 6 
will be discussed. 

Almost all of the results about algebraic Riccati equations in the existing 
literature that we refer to in this paper can be found in the recent book [16]. 

2. THE STABILIZING SOLUTION 

Consider the Riccati equation 

We shall consider 
stabilizing for the 

XBJB*X - XA - A*X - C*C = 0. (2.1) 

throughout this section the Hermitian solution which is 
pair (A, -BIB*), f ‘t i 1 exists, and we shall denote this 
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solution by X. So A - BJB*X is a matrix which has all its eigenvalues in C,. 
Let H and -4 be as in (1.2) and (1.5). As H In is similar to A - B]B*X, it 
follows that 

u( HIA) c Cl. (2.2) 

The question whether X is nonnegative or not is reduced to a smaller Riccati 
equation where the corresponding stabilizing solution is invertible. 

In this and the following section the orthogonal projection along Y< 
onto Y<’ is denoted by rr. That is, w = (0 Z) with respect to C” = 
Y< @ 7,’ , and n* = (0 Z>r is the corresponding canonical embedding 
of 7<’ into P. 

THEOREM 2.1. The equation (2.1) has a Hermitian solution X that is 
stabilizing for the pair (A, -BIB*) if and only if the equation 

7rBJB*n* + DATES + SrrA%* - S~-C*CT*S = 0 (2.3) 

has an invertible Hermitian solution S acting on the space 7,’ which is 
stabilizing for the pair (- ~A*rr, rrC*Cr*). In that case 

x=(:: _$) (2.4) 

with respect to the decomposition @” = V, @V<’ . Moreover, the stabiliz- 
ing solution X is nonnegative if and only if S is negative definite. 

Proof. Assume that X is a Hermitian stabilizing solution of (2.1). Due to 
(2.2) the n-dimensional subspace .,# is contained in 9( H, a=,). From (1.3) it 
follows that H and -H * are similar; hence cr( H) is symmetric with respect 
to iR. Hence A =9( H, C,). Observe that the subspace P*V, is a sub- 
space of R(H, @,). Hence P*V, CJ% and 

V< C Ker X. (2.5) 

Choose a subspace x such that & = P*z”, i_%? As J% is J,-neutral, we 
haveforallxE V; andkE~that(J,P*x,k)=O,so(O Z)~C???<‘. 

We now show that Ker X c 7; . Indeed, assume X;r = 0. Then 

0 = (( XBJB*X - x4 - fix - c*c)~, X> = -(cock, x>, 
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and hence x 
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E Ker C. But then 

O=(XBJB*X-XA-A*X-C*C)x= -XAx. 

Thus, Ker X is A-invariant and contained in Ker C. Moreover, if Xx = 0 
then HP*x = P*Ax. Hence H IPeKrrX is similar to AIKrrX. The former has 
all its eigenvalues in the open left half plane, because X is the stabilizing 
solution. Thus we obtain that Ker X c V; . 

Together with (2.5) this implies 

V, = Ker X. (2.6) 

It follows that Z does not contain nonzero vectors of the form P*x, and 
consequently that dim(0 I)Z = dim Z As dim A = 12, we have dim Z = 
dim V<’ , so(0 z)~=~<L. Hence there is an S,, : Y’<’ + @” such that 

Let S : v<’ + v<’ be defined by S = rrS,, and let 

Then X also complements I’*%‘< 
the operator S must be invertible. 

in A. Note that, from Z’ CA and (1.5), 

Next, we show that S is a solution of (2.3). This is a consequence of the 
H-invariance of J. Indeed, for y E V<’ we have 

Hi-?;T) = ( 
-Arr*Sy - B]B%*y 
CYh”Sy - A%*y 

)=(;)+(-$J=) 

for some x E V; and z E V;l . Hence 

-rrArr*Sy - nB]B*r*y =rrx - 7~7~*Sz = -Sz = -Smr*; 

= -SrC*Cr*Sy + SrrA%*y, 

and S is a solution of (2.3). 
From 
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it follows directly that with respect to the decomposition @” = ‘~7, @ ??<’ 
the matrix X can be written as in (2.4). 

Observe that 

-ITA*T* + TC*CTT*S = S-‘(7~BJB*n* + TAT*S) 

= S-‘(~-AT* + nBJB*r*S-‘)S, 

and that with respect to the decomposition Z?‘” = V, @ 7,’ the matrix 
A - B]B*X can be written as 

Ab< * 
A - BJB*X = 

0 Parr* + TB]B*T*S-~ ’ 

From this one sees that S is stabilizing for the pair ( - mA*r*, r C*Cr *). 
Conversely, if S is an invertible Hermitian stabilizing solution of (2.3) a 

direct computation shows that X from (2.4) is Hermitian and stabilizing and 
solves (2.1). 

The last statement in the theorem follows immediately form (2.4). w 

It is easily seen that also the pair (- Z-A*rr**, 7zC*) is stabilizable. Thus, 
the results of [ll] are applicable to Equation (2.3). 

In the special case when 7~ BJB*rr* 2 0, necessary and sufficient condi- 
tions for the existence of a negative definite solution to (2.3) are given in, e.g., 
[20]. However, we can show that in this case the stabilizing solution of (2.3) is 
automatically negative definite. Indeed, because of the stabilizability of 
(--ALIT*, rC*) it follows from [26, Theorem 2.11 that the stabilizing 
solution S of (2.3) is nonpositive. By construction S is invertible, and so S is 
negative definite in case aBJB*m* 2 0. Note that the nonnegativity of 
7~ BJB *rr * is a sufficient condition for negativity of the stabilizing solution, 
but by no means a necessary condition (as we shall see for a special case in 
the next section). 

3. THE CASE C - 0 

In the study of inner-outer factorization of stable rational matrix functions 
the following Riccati equation plays a role: 

XBJB*X - XA - A*X = 0. (3.1) 
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In particular, nonnegativity of the stabilizing solution is equivalent to exis- 
tence of an inner-outer factorization of a certain rational matrix function (see 
[5, 141). 

Throughout this section we assume the existence of a Hermitian solution 
X of (3.1), which is stabilizing for the pair (A, -BIB*). The Hamiltonian 
corresponding to (3.1) is given by 

Existence of a stabilizing solution implies o(H) r‘l ilw = 0. Clearly, as 
C = 0, the latter is also equivalent to c+(A) n ilw = 0. 

Applying Theorem 2.1 in this situation, we see that (3.1) has a nonnega- 
tive stabilizing solution if and only if the solution S of 

rrAm*S + %A%* = -ITBIB%* (3.2) 

which is stabilizing for the pair ( - rrA*r*, 0) is negative definite. Assuming 
that the stabilizing solution X exists, it follows that all eigenvalues of rA%* 
are in the right half plane. Hence all eigenvalues of rrAn* = (7~A*n*)* are 
also in the right half plane. It follows that cr(~Arr*) n cr( - rrA*r) = 0. 
Thus (3.2) has a unique solution. We conclude that the stabilizing solution X 
of (3.1) is nonnegative if and only if the unique solution S of (3.2) is negative 
definite. 

Recall from the previous section that we can write 

J=Im 4 
( i 

= P*Y< 6B -,“:S 7Y<l . 
i 1 

Also, S : ‘ii?<’ -+ V;’ . Fix any basis in Y?< , say .rr, . . . , x ,,,, and any basis in 
v;’ , say yl,. . . , yn-,,,. Then 
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is a basis of &. The Gram matrix of Js with respect to the basis of & is 
given by 

i 

0 0 

O (-2(sYi, Yj>)“i_“l ’ 
T i 

As X is nonnegative if and only if S is negative definite, we see that X is 
nonnegative if and only if the matrix (( Syi, yj)>~f~r is negative definite. We 
shall compute this matrix for a particular choice of the basis in V<’ . In fact, 
we have, using [3, Theorem A.l.l, Appendix], the following result. 

THEOREM 3.1. Let yik E ??<‘, i = l,..., sk, k = l,..., r, bea]ordan 
basis for - TA%*. More precisely, assume 

-mA*r*yik = ‘kyik + yi-lk (YOk := 0). 

Then 

(3.3) 

for k, 1 = 1, . . . , r, i = 1, . . . , Sk, and j = 1, . . . , sl. 

Here it is not assumed that the numbers h,, . . . , A, are different. Ob- 
serve, however, that hk is in the open left half plane, and therefore always 
different from - x. 

Proof. Let G = - rrA%* and let r = mB]B*r *. We want to solve 

SC - (-G*)S = I-. (3.4 

We have a(G) E C, and c+(-G*) E C,. Write the vectors yik according to 
some orthonormal basis of V,’ . Let T be the matrix of size dim V<’ with 
these vectors as columns. Equation (3.4) translates to 

T*STT-lGT - (-T*G*T-*)T*ST = T*TT. 
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The matrix T- ’ GT consists of a diagonal of Jordan blocks 

Ak 1 \ 

(TplGTjkk = A,z,~~ +J,, = A, 1’. 1 

\ Ak / 

of size sk X sk for k = 1, . . . , r. Consider T*ST and T*TT with the cor- 
responding block structure. For k, I = 1, . . . , r the klth block CT *ST),, 
satisfies 

(T*ST)&&I + Is,) - (- /lk&& -J;;)(T*ST),, = (T*I-T)kl. 

Let D, = diad - 1, 1, . . . , (- l)‘i). Then 

According to 13, Theorem A.l.l, Appendix], the entries (Dk(T*ST)k,)ij of 
D,(T*ST),, satisfy 

i&l j-l 

(Dk(T*ST)kl)ij = C C (Dk(T*rT)k,)i--.i~.(-l)” 
r=o V’O 

X 

Hence the entries ((T*,YX),,)~~ of (T*ST)k, satisfy 

i-1 j-l 

((T*ST)kl)ij = C C ((T*rT)k,),-,j-,( -l)vmT 
r=o v=n 

-~ 
A, + Ak) ‘-‘? 

This translates immediately to the equality (3.3). ??

Now it is possible to compute, in terms of the data from the matrices A 
and B, whether the stabilizing Hermitian solution of (3.1) will be nonnegative 
or not. 
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COROLLARY 3.2. The Hermitian solution X of (3.1) that stabilizes the 
pair (A, -BIB*) is nonnegative if and only if the matrix 

ik. jl 

with the indices ik andjl running through the set 

{(l I>>...> (sl I),(1 2), . . . . (sp 2),...,(1 r>,...,(q. r)}, 

is negative definite. 

4. THE CASE J = Z 

In this section we consider the problem of existence and parametrization 
of nonnegative solutions of the algebraic Riccati equation 

xBB*X - XA - A*X - C*C = 0. (4.1) 

Throughout this section we shall assume that (A, B) is controllable, i.e., 

Im(B AB **. A”-‘B) = C”. 

The controllability guarantees the existence of a Hermitian solution X, such 
that A - BB*X+ has all its eigenvalues in the closed left half plane. This 
solution is unique, it is nonnegative, and it is the maximal Hermitian solution, 
i.e., X+2 X for any other Hermitian solution X of (4.1). See, e.g., [26, 
Theorem 2.11. The uniqueness is from [17, Theorem 31. The pair (C, A) is 
called observable if 

’ c ’ 
CA 

Ker . = {O). 

\CAn-‘1 

If (A, B) is controllable and (C, A) is observable, then there is just one 
nonnegative solution. See, e.g., 117, Section 21. 
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From Section 1 we recall the following observations. Let 

then iH is iJ,-self-adjoint and -I,-dissipative. In such a case it is well known 
that 9(H, Cl> and s(H, @,> are J,-neutral subspaces; see [2, Theorem 
II.3.31. Recall that there is a one-one correspondence between Hermitian 
solutions and n-dimensional J,-neutral H-invariant subspaces. If (A, B) is 
controllable, then for every H-invariant subspace M+ C 9( H, C,> there exists 
a unique n-dimensional Ii-neutral H-invariant subspace M such that _// n 

9(H, C,,) =N+ (combine [lo, Corollary 11.4.71 with [19, Theorem 11). This 
gives a full description of all n-dimensional H-invariant J,-neutral subspaces. 
There is also a description of n-dimensional H-invariant J,-nonnegative 
subspaces (see [25]). If the equation (4.1) has a Hermitian solution, then it is 
shown in [17, Theorem l] that H has only even partial multiplicities at its 
purely imaginary eigenvalues (if any). Let NO be the H-invariant subspace 
spanned by the vectors that are in the first half of Jordan chains of H 
corresponding to purely imaginary eigenvalues of H. Then any H-invariant 
maximal I,-neutral subspace _& is of the form 

~=JV-+~-JY-, i-[(],M+)’ fI%T(H,C,)], (4.2) 

where Jy;- is an arbitrary H-invariant subspace of LATCH, @,I; see [lo, 
Theorems 1.3.21, 1.3.221. As observed in [17, Theorem l] (see also [lo], 
Theorem 11.4.8]), any such subspace A is of the form 

&=Im ’ 
i 1 X 

(4.3) 

for a Hermitian solution X of (4.1). The maximal solution, for instance, is 
obtained by taking N+= {O}. In order for M to be IS-nonnegative it is 
necessary and sufficient that M+ be Is-neutral (see [25], Theorem 2.7, 
Theorem 3.41). 

The main result of this section establishes a one-one correspondence 
between the set of all A-invariant subspaces _N contained in V> and the set 
of all nonnegative Hermitian solutions X of (4.1). Similar statements appear 
in [6], [15], [27], and [28]. In fact, the parametrizing set of subspaces in the 
theorem below is the same as the parametrizing set in [15, Theorem 3.3.41. 
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However, the formulas to describe the one-one correspondence and the 
proof are different. In particular, the maximal Hermitian solution X, is not 
needed in the approach below. 

In [27] and [29] also the order structure of the set of nonnegative solutions 
was considered. In [28] the topology of the set of nonnegative Hermitian 
solutions was considered, and the isolated nonnegative Hermitian solutions 
were described. Both structures-the order structure and the topological 
structure of the set of nonnegative solutions-can easily be described based 
on Theorem 4.1. We shall do this in the next section. 

THEOREM 4.1. Assume (A, B) is controllable. Let JV be an A-invariant 
subspace contained in Y, . Put J’+ = P*N, and let J be given by (4.2). Then 
J is of the form (4.3) f or a nonnegative Hermitian solution X of (4.1). 
Conversely, ifX is a nonnegative Hermitian solution of (4.1), construct J as 
in (4.3) and put N+ =./Z n S’( H, a=,.). Then .I+ is the form Jy+ = P*Jzr, where 

J is A-invariant and contained in F, . 

First let us assume that Jf is A-invariant and contained in V; . Put 
x+= P*J, and let & be given by (4.2). It is easily seen that JV+ is 
H-invariant and a subspace of S?(H, @,). The subspace J% is maximal 
J,-neutral by construction (see, e.g., [21]). Thus d is of the form (4.3) for a 
Hermitian solution X of (4.1), by [17, Theorem 11. Observe that also 

Jfrc Ker X. Note also that Ker X always is an A-invariant subspace which is 
contained in Ker C. The latter observation will be useful later. 

To see that X is nonnegative, we show that d is ],-nonnegative. Let us 
first analyze Jo. This subspace is H-invariant and J,-neutral, and because of 
the fact that H has only even partial multiplicities at its purely imaginary 
eigenvalues, it follows from [25, Theorem 2.71 that Jo is also J,-neutral. Also 
from [25, Theorem 2.71 we have that J0 is J,-orthogonal both to S?( H, C,) 
and to s%‘( H, a=,>. In particular, Jt/, is J,-orthogonal both to J+ and to 
(],J'+)'n&H,@,) and to itself (here we use in both assertions the fact 
that JV+ is of the form JET, = P*M). Finally, from [25, Theorem 3.41 or 1131, 
Theorem 11.61, we have that SF(H, @,) is J,-nonnegative. Thus the Gram 
matrix of Jz with respect to the decomposition of d given by (4.2) is 

for some nonnegative Hermitian matrix G. Hence 4 is Jz-nonnegative. 
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Conversely, let X be a nonnegative Hermitian solution of (4.1). Let d 
be as in (4.3). Put .N+ =A n S(H, C,>. We have to show that .N+ is the 
form .J+ = P*N, where JV is A-invariant and contained in Y> . Observe that 

.N+ is H-invariant, and Ii-neutral. As X is nonnegative, we have that J% is 
J,-nonnegative. Since S(H, C,) is JZ- non osi ive p t’ ( see [I3, Theorem 11.611, it 
follows that N+ is J,-neutral. Because of these observations we have 

(J,ff(G),(c))=O and (J2H(t),(G))=0 forall (;) EM+. 

The first of these equalities translates to 

( - C*Cr - A*y, x> + ( - Ax + BB*y, y) = 0, (4.4) 

while the second translates to 

( - C*Cx - A*y, x) + (Ax - BB*y, y) = 0. (4.5) 

Addition of (4.4) and (4.5) yields ( A*y, x) = -[(Cxl\‘, and hence (x, A*y) 
= -llCxl12, while subtraction yelds (Ax, y) = llB*yll”. But (Ax, y) = 
(x, A*y), so -llC~l12 = lIB*yll , and therefore, they are both zero: Cx = 0 
and B* y = 0. But then 

G+=( ;: _:*)l,. 
Thus 

where Jy is A-invariant and contained in Y> , while _N2 is - A*-invariant 
and contained in Ker B *. It follows from controllability of (A, B) that 

J2 = (0). 
From the arguments above it is clear that different nonnegative Hermi- 

tian solutions give rise to different subspaces and vice versa. Thus the 
correspondence between the subspaces N and the nonnegative solutions X 
given in the statement of the theorem is really a one-one correspondence. 
Thus the theorem is proved. ??
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The parametrization in [27] is actually based on a parametrization of 
the subspaces that can occur as Ker X for a nonnegative Hermitian solution 
x of (4.1). 

PROPOSITION 4.2. Let (A, B) be controllable. Let X be an arbitrary 
nonnegative Hermitian solution of (4.1). Then YS C Ker X. 

Proof. Let h be an eigenvalue of A with Re A I 0. Observe that 
TnS(A, {A}) is an A-invariant subspace. Let x1,. . . , xk be a Jordan chain 
of A in Yn@ A, {A}), i.e., Ax. = Axj + xi_ 1, where x0 = 0. We shall show 
that IGcj = 0 for all j, by m uction. .i For x0 this is trivial. Assume that 
Xxi = 0 for all i < j. As all vectors xj are in 7, they are in Ker C. Then 

0 =(( XBB*X - m - A*X - c*qxj, xj) 

=( XBB*IGcj, xj) -( X( kcj + x3_& xj) -( tij, Axj + +I>. 

By the induction hypothesis it follows that 

0 = (xBB*~~, xj) - (A + A)(x~,, xj). 

As X is nonnegative, we see that if Re A < 0 then Xkj = 0. In case Re A = 0 
we only obtain B*Xxj = 0 But then, again using the induction hypothesis, 

0 = XBB*Xxj - XAxj - A*Xxj - C*Cxj 

= _x( Axj + x~_~) - A*Xxj = -xAxj - A*aj. 

Thus we have A*Xxj = -AXxj and B*XRxj = 0. The controllability of (A, B) 
then shows that Xkj = 0. ??

Theorem 4.1 provides a parametrization of the set of nonnegative solu- 
tions of (4.1) in terms of A-invariant subspaces contained in V, . Given such 
a subspace .N we have by the above proposition and the observations of the 
proof of Theorem 4.1 that Vi 4M-c Ker X C 7. Also, it is seen from (4.2) 
that in fact 

Ker X = YS -i-N. (4.6) 
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Thus we can also parametrize the set of nonnegative solutions of (4.1) by 
the set of subspaces which are A-invariant, are contained in Ker C, and 
contain yS . It is this parametrization which is given in [27]. 

5. ORDER STRUCTURE, TOPOLOGY, AND STABILITY 

Introduce the sets of subspaces N = {NC %?‘” ( AJI”CJ,JVC V;) and 
L = {NC Cl'" IJcLZ(H,@,), H.NcNj. Denoteby Pthe setofnonnega- 
tive Hermitian solutions of (4.1), and by H the set of Hermitian solutions of 
(4.1). These four sets are equipped with a topology as follows: P and H 
inherit the topology induced by the norm; on N and L the gap topology is 
considered, i.e., the distance between two subspaces 3 and 2 is measured 
by the gap 0(Z 2) = IIP, - Ppll, w h ere PJPy) is the orthogonal projec- 
tion onto Z(p). Furthermore, N and L are equipped with the order 
structure given by inclusion, and P and H inherit the order structure of the 
set of Hermitian matrices, i.e., X 4 Y means Y - X is nonnegative. Let 
7 : P + N be the map given by y( X > =M, where J is such that 

Im 
i 1 

; nS(H,C,) = <. 
i 1 

Also define p : H + L by 

p(X) = Im i nS?(H,@,). 
i 1 

It is known (see [21, Theorem 2.71 and [22, Theorem 4.21 for continuity, [23, 
Theorem 91 for the ordering) that p and p-l are continuous and order 
reversing. As y = Pp(r and 7-l = ~-‘\p*~, we see that y and y-’ are 
continuous and order reversing. This proves immediately the following 
theorem. 

THEOREM 5.1. The order structure of the set of nonnegative Hermitian 
solutions P and the order structure of the set N are essentially the same in 
the following sense: Let X,, X, E P and let 4 = y(X,); then HI C.A$ 
implies X, > X,, and conversely. 

The next theorem describes the isolated nonnegative solutions. The 
equivalence of (i) and ( vu1 in the theorem below easily translates into the “‘) 
description of isolated nonnegative solutions given in [28]. 
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THEOREM 5.2. Assume (A, B) is controllable. 
Hermitian solution of (4.1). Let 

RAN, AND D. TEMME 

Let X be a nonnegative 

and let N = P(M n s( H, C,)). Then the following are equivalent: 

(i) X is an isolated nonnegative Hermitian solution of (4.1); 
(ii) 4 is isolated within the set of H-invariant subspaces that are 

J,-maximal neutral, and J,-nonnegative; 
(iii) _& ns%H, C,.) is isolated within the set of subspaces of 9(H, C,.) 

that are H-invariant and J,-neutral; 
(iv) Jf is isolated in N; 
(v) JV is isolated as an Alvinvariant subspace, and Re V( AlJ) > 0; 

(vi) J?” is isolated as an Al V, -invariant subspace; 
(vii) for every eigenvalue A of Al y, with dim Kel( AIV, - A) > 1, 

eitherJtrn L%‘( A, {h)) = (0) or s%‘( A, {A]) n V, cH; 
(viii) for eve y eigenvalue A of A/v, with dim Ker( AIV, - A) > 1, 

either KerXn~(A,{A})={O}or~(A,{A})n~,cKerX. 

Proof. (i) * (ii): Suppose _,L? is not isolated. Then there is a sequence of 
H-invariant, maximal Ii-neutral and J,-nonnegative subspaces dk such that 

dk +J%. Then 

for some nonnegative solution X, of (4.1). For all E > 0 there is a number k 
such that II Prr, - PAI/ < E. According to Theorem 13.4.2 of [9], for all 
x E @” there exists a vector yk E c” such that 

Hence IIyk - XII < E and llXkyk - xX11 < E. From X, I X,, where X, 
denotes the maximal solution of (4.11, it follows that ljXkll 5 11 X+1]. Hence 

I/X,x - all 5 11X,( x - y,)ll + IlXkyk - *II s (IlX+ll + I)&* 

It follows that Xk + X and X is not isolated. 
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(ii) j (iii): Supp ose .&‘+ =J% n A%?( H, C,) is not isolated. Then there is a 
sequence of H-invariant and J,-neutral subspaces M* + c z%‘( H, C,) such that 

Hn + + N+ . In particular 4, + and JY+ have the same dimensions. Observe 
that, as X,+ cSF( H, C,), it is also Ii-neutral. Construct the n-dimensional 
subspaces 

According to Theorem 13.4.1 of [9] there is a subsequence of Mi, AZ, . . . , 
denoted by An,, dn,, . . . , that converges to some n-dimensional subspace 

A’. Since An, is H-invariant for all k, it follows that J%’ is H-invariant; see 
[9, Corollary 15.1.21. Since An, is J,-neutral and J,-nonnegative, it follows 
that 4’ is J,-neutral and ],-nonnegative. Write 

_+g’= [A’ ns(H,@,)] i[Z n9(H,iR)] +[J'ns(H,c,)l. 

Next we will show the three inclusions 

A%' nsXH,@,)cJ~+~ 
AT' n s%TH,iR) c-4,, 
k' n 9(H,@,) cCJIN+)' ns(H&). 

For any x+E&’ n 9(H,@,) there are vectors x,,~ = x,~++ x,,~~ + x,~_E 
&,,, such that (lx+ - x,J + 0. By continuity of the projection on g( H, C,) 
along 9(H, Cl U iR) if follows that I]x+- x,~+II + 0. From 19, Theo- 
rem 13.4.21 it follows that x+ E J’+. Hence .# n 9( H, C,) C _A'+. For any 
x0 E A’ n 9( H, iR> there are vectors x,,~ = x,~++ x,,~~ + x,,~_E Jnn, such 
that ]Ix_- x,~I] -+ 0. Projection on 9(H, iR) along 9(H, CL U c,> gives 
ll% - X,tikO I] + 0. Clearly the sequence _,&, n 9(H, iR) =X0 converges to 

Jo. Thus x0 E Jo and M’ n SS'(H, iR) c Jo. For any X-E J? n .S'(H, C,) 
there are vectors x,~ = x,~++ x,,~ + x,,_E .J& such that I]x--- x,,IJ --+ 0. 
Projection on &H, C,) along S'(H, i[w U C,> gives 11x_- r,,,,_ll -+ 0. Let 
y be some arbitrary vector in JtT,. Choose a sequence of vectors ynk E Jy,, 
that converges to y. Then 
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Thus X-E (J#‘+)’ and M' n S’(H, Cl> c (JJ+)’ n SXH, Cl). Com- 
bining the three inclusions gives A’ c A, but, as .# and J have the same 
dimension, equality holds. Hence & is not isolated. 

(iii) j (iv): From the proof of Theorem 4.1 it follows that & n 
S’( H, C,) = P*d Since the canonical embedding P* is continuous, it follows 
that JV” is isolated if .& n S’(H, C,) is isolated. 

(iv) 3 (i): Assume X is not isolated. Then there are nonnegative solutions 
X, of (4.1) such that II X, - XII -+ 0. From [9, Theorem 13.5.11 it follows that 
Ker X, --f Ker X. Hence dim Ker X, = dim Ker X for IZ large enough. Let 

and let J$ = P(J$ n 9(H, C,)). F rom (4.6) it follows that dirnxn = dimJV 
for n large enough. Let J&J& . . . , be a subsequence converging to some 
subspace .xV. Then dimY = dirn.A& for k large enough. Thus dim&” = 
dimx For any x E JV’ there are vectors x_ E Hn, converging to x. Note 
that ;Y,~ E Ker X_ for all k. H ence Xx = (X - X_)x + Xnk( x - x,~). This 
implies that x E Ker X. Thus P*x E A. Moreover, since P*xnk E 2’(H, @,), 
we have that P*x E @H, a=,>. Hence x E P(.& n S’(H, C,)) =.N and 

JV’ E JIT. As JV’ and Jtr have the same dimension, equality holds. From Theo- 
rem 4.1 it follows that Nn, E N. Thus Jf is not isolated. 

(v) and (vi) are essentially just reformulations of (iv), while the equiva- 
lence of (vii) with (vi) is known from [4, Theorem 8.11. The reformulation of 
(vii) and (viii) is a consequence of the fact that Ker X =Ji ctS , as 
observed in (4.6). ??

Next, we shall consider the question of stability of nonnegative Hermitian 
solutions under small perturbations of the coefficients of the algebraic Riccati 
equation (4.1). A nonnegative Hermitian solution X, of (4.1) is called stably 
nonnegative if for every E > 0 there is a S > 0 such that ]I A - AllI + II B - 

Bill + IIC - C,II < 6 . pl im ies that the algebraic Riccati equation 

XB,BfX - XA, - ATX - C:C, = 0 

has a nonnegative Hermitian solution Xi such that IIX, - X,1] < E. 
The following lemma, which may be of independent interest, will be 

useful in the description of stably nonnegative solutions. It shows that the set 
of pairs (C, A) which are not observable is an open and dense subset of the 
set of all pairs (C, A) of the same size. 
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LEMMA 5.3. Assume (A, B) is controllable and (C, A) is not obserrjable. 
For E > 0 small enough there exist A(E), C(s) .such that (C(E), A(E)) is 
observable, (A(E), B) is controllable, and IIC - C(.F)II + II A - A(s)11 < 6. 

Proof. 
rows of 

Let C = (cij)yjnl, and let A = (a,j)yj_ 1. Consider the first rr 

1 c ’ 
CA 

. . 

CA’“? 1 

This gives an n X n matrix, which we shall denote by 8. Its determinant is a 
polynomial in the variables cij and a,j. the pair (C, A) is certainly observable 
if det B # 0. Let us identify the pair of matrices (C, A) with the matrix (C” 
AT)’ in @(m+n)Xn. It is well known that the solution of the equation 
det B = 0 is an algebraic variety in ccn+“‘)xn of lower dimension. Hence, 
in every neighborhood of CC,, ‘4,) there is pair of matrices (C, A) with 
deg 0’ f 0, i.e., an observable pair of matrices. The controllability of the pair 
(A, B) means that the matrix (B AB ... A”- ‘B) has full rank, and the rank 
does not change under small perturbations of A. ??

THEOREM 5.4. Assume (A, B) is controllable. Then there is only ow 
stably nonnegative solution of (4.1), being the maximal one. 

Proof. Let X, be the maximal solution of (4.1). Let 

The n-dimensional subspace 4 is H-invariant, ]r-neutral, and I2 = 
nonnegative. Note that, according to Theorem 5.1, the subspace M”= 
P(JY f~ 9( H, a=,)) that corresponds to X, equals M= {O}. Let A,,, + A, 
B,,, + B, and C,, -+ C, and let X,,, be the maximal solution of the perturbed 
equation 

XB, B,*, X - XA,,, - AT,, X - C,*,C,,, = 0. 

Let H,,, be the corresponding Hamiltonian. Clearly H,n converges to H. 
According to [26, Theorem 2.11, th e matrix X,,, is a nonnegative solution. Let 
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The n-dimensional subspace &, is H,-invariant, J,-neutral, and Js- 
nonnegative. Let Jt/,, be the H,-invariant subspace spanned by the vectors 
that are in the first half of Jordan chains of H, corresponding to pure 
imaginary eigenvalues of H,. From Theorem 5.1 it follows that P(dm n 
L%'(H~,~~)) = (0). Due to (4.2) it f o 11 ows that _,& =/& i&@ H,, C,) and 
dH,l~,) c cl U iR. 

First we show that X, is a stably nonnegative solution of (4.1). As the set 
of subspaces of dimension n is compact, we may as well assume from the * _ 
start that &m -+A’ for some n-dimensional 
H,-invariant, J,-neutral, and Is-nonnegative, 
variant, Ji-neutral, and _/,-nonnegative. Hence 

subspace A’. Since 4, is 
it follows that .# is H-in- 
&’ has the form 

.P = Im ’ 
( 1 X’ 

for some nonnegative solution X’ of (4.1). Since u(H,IJ,) C @[ U i[w for all 
m, it follows that c+(Hl_,p) c Cl U ik!; see [9, Theorem 15.1.41. Hence 
I’(&’ fl S(H,@,)) = (0) =N, and f rom Theorem 4.1 it follows that X’ = 
X,. Hence X, is a stably nonnegative solution. 

Conversely, to show that the maximal solution is the only stably nonnega- 
tive solution, let (C,, A,) + (C, A) be such that for each E the pair 
(C,, A,) is observable and (A,, B) is controllable (this is possible by Lemma 
5.3). Then the algebraic Riccati equation 

XBB*X - XA, - A;X - C;C, = 0 

has only one nonnegative Hermitian solution X,. Hence X, is the maximal 
solution of the perturbed equation. From the first part of this proof it follows 
that X, converges to the maximal solution of (4.1). W 

6. INERTIA OF HERMITIAN SOLUTIONS 

Consider again the algebraic Riccati equation 

XBB*X-XA-A*X-C*C =O, (6.1) 

under the usual assumption that ( A, B) 1s controllable. Let X be a Hermi- 
tian solution, and consider 

.&=Im {. 
t 1 

(6.2) 
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The problem we wish to solve is the following: can we characterize the inertia 
of X in terms of properties of the subspace &? 

To start with, the following proposition shows that dim Ker X = 
dim(_& fl P*V>. 

PROP~XTION 6.1. Assume ( A, B) is controllable. Let X be Hermitian 
solutinn of (6.1), and let _++f be as in (6.2). Then 

P* Ker X =A n P*V. 

Prot?f. Put YV = P* Ker X. Clearly&” CA%. Moreover, if x E Ker X, we 
have already seen that x E 7. This shows that MC_& n P*V. Conversely, 
let x E Y” such that P*x E 4. Then Xx = 0 by the definition of &. 
Consequently, _.& n P*VCJK This proves the proposition. W 

Recall that the Hamiltonian H corresponding to (6.2) is 

As in Section 4, let x0 be the H-invariant subspace spanned by vectors that 
are in the first half of Jordan chains of H corresponding to pure imaginary 
eigenvalues of H. The subspace N,, is J,-neutral and J,-neutral. By the 
remark after the proof of Theorem 4.1, we have that x0 = P*PNo where 
PJY; c V,, i.e., P.Jo c To n Ker X. Let us consider Vcv,,. Let x be an 
eigenvector of A( vO. Then Ax = h, x where Re A, = 0, and Cx = 0. It 
follows easily that (XBB*Xx, x) = 0, i.e., B*Xx = 0. Then 

0 = (XBB*X - XA - A*X - C*C)x = -X&x - A*&. 

Hence A*& = -&Xx. As (B*, A*) is observable, we get that % = 0. 
Thus x E Ker X. Analogously, an induction argument with respect to the 
Jordan chains of AlTo shows that 74) c Ker X. Summarizing, we have 

PM0 C FTo C Ker X. 

In fact the first two subspaces are equal: P.Jo = To. Indeed, let x E V;,. 
Then x E Ker X and P*x E _&‘. From x E Ker C n 9(A, iR) it follows 
that 

P*x E 9( HIA, iR) =Jy;,, 
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where the equality follows from (4.2). Hence x E I?&, and we conclude that 
PJL = TO and even JL”, = P*VO. 

Let us denote by 7~ (v) the number of positive (negative) eigenvalues 
of X, multiplicities taken into account, and let 6 = dim Ker X. 

If we write 

and 

dn s(H,@,) = (.m p*V,> ix> 
for some J?< and 2, , then 

=z< i(.dn P*v<) i(.4rnHo) i(.dn P*v;) ix, 

=Z< /P*KerX $3, . (6.3) 

It follows that Y + 7r = dim x< + dim 3, . The relation (1.6) shows that 7r, 
v,, and 6 are the numbers of positive, negative, and zero squares, respec- 
tively, of the quadratic form (JZ *, *> on A. Then the equation (6.3) implies 
that V+ m= dimZ< +dimZ,. From [25, Lemma 3.31 it follows that 
B’(H, C,) is J,-nonpositive and S’(H, C,) is I,-nonegative. Hence Z< is 
],-nonpositive, and 3, is J,-nonnegative. This shows that n 5 dim Z, and 
v I dim S& . Combining these observations we see that rr = dim Z> and 
v=dim&, and we arrive at the following theorem. 

THEOREM 6.2. Assume (A, B) is controllable. Let X be a Hermitian 
solution of (6.1), and let J be as in (6.2). Then 

rr = dim[_&n 9( H,@,)] - dim(dn P*Y<), 

V= dim[_Mn 9(H,@,)] - dim(Mn P*V,), 

6 = dim[An P*v]. 
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7. NONNEGATIVE SOLUTIONS FOR THE DISCRETE 
ALGEBRAIC RICCATI EQUATION 

In this section we do the analogue of Section 4 for the discrete algebraic 
Riccati equation. 

The equation number consideration is 

X = A*XA + Q - A*XB( R + B*XB)-‘B*XA (7.1) 

where A is an n X n matrix, p 2 0 is also an n X n matrix, R > 0 is an 
m X m matrix, and B is an n X m matrix. The matrix X is to be found. The 
equation plays a role in the study of LQ-optimal control for discrete-time 
systems. We would like to have a parametrization of all nonnegative Herm- 
tian solutions X. We shall assume throughout that A is invertible and that 
(A, B) is controllable. 

Introduce 

A + BR-lB*A*-‘Q 
_A*--’ Q 

(7.2) 

Recall that 

ll=(!, (:) and .J2=(y i). 
Straightforward computation yields that T*J,T = JI, i.e., T is J,-unitary. 
Again by straightforward computation it is checked that 

lz - T*J2T = 2 
Q + QA-~BR-~B*A*-]Q -QA-~BR-~B*A*~~ 

-A-‘BR-$*A*-‘Q A- IBR~ ~B*A- I 

=2[(: i)+(z) A-‘BR-lB*A*-‘(Q -I) 1 2 0. 

(7.3) 

Thus T*J,T I]~, i.e., T is J,-contractive. 
In this and the next section we will use Gin for the set of complex 

numbers inside the open unit disc and Colrt for the set of complex numbers 
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outside the closed unit disc. The unit circle will be denoted by T. In the rest 
of this paper 7 denotes the maximal A-invariant subspace contained in 
Ker Q. The subspace Y contains the subspaces V, = S’“n &A, ci,), Y, = 
Y-n 9(A, tout), V, = Yn 9(A, U), and YS = Yn ,_%?(A, Ci, Us). The 
notation ?Y”, etc., has been used for the analogous subspaces in the previous 
sections, and no confusion will arise. As before, P = (I 0) denotes the 
orthogonal projection of czn onto C”, and P* = (I O)T is the corresponding 
canonical embedding. 

The following propositions are known. 

PROPOSITION 7.1 ([18, Theorem 0.2; see also [24, Theorem 1.11). As- 
sume (A, B) is controllable, A is invertible, Q 2 0, and R > 0. Every 
n-dimensional T-invariant ],-neutral subspace J is of the form 

.M=Im ’ 
i 1 X (7.4) 

for some Hermitian solution X of (7.1). Conversely, if X is a Hermitian 
solution of (7.1) then the n-dimensional subspace 1 constructed as in (7.4) 
is T-invariant and],-neutral. There exists a Hermitian solution of (7.1) if and 
only if T has only even partial multiplicities corresponding to its eigenvalues 
on the unit circle. 

PROPOSITION 7.2 [26, Theorem 3.11. Assume (A, B) is controllable, A is 
invertible, Q 2 0, and R > 0. Then the algebraic Riccati equation (7.1) has a 
nonnegative solution. In fact, there exists a nonnegative solution X, of (7.1), 
the maximal solution, such that X, 2 X for any other Hermitian solution X 
of (7.1). 

PROPOSITION 7.3 [13, Theorems 7.1, 11.2; 1, Proposition 1.51. Assume 

]=] * is an invertible matrix. Assume T is ]-contractive, i.e., T*]T I J. 
Then 9(T, @,,) is J-nonpositive and 9?(T, C,) is ]-nonnegative. For any 
Jordan chain x1,..., x, of T corresponding to an eigenvalue on the unit 
circle, the subspace span{xi, . . . , x,,,}, where m = [n/2], is ]-neutral. Zf T is 
J-unitary, then both @T, tout) and 9(T, a=,,) are]-neutral. 

Assume X is a Hermitian solution of (7.1). From (1.6) it follows that X is 
nonnegative if and only if the corresponding subspace JY is maximal 12-non- 
negative. 

Combining Propositions 7.1 and 7.2, it follows that the matrix T has only 
even partial multiplicities for its eigenvalues on the unit circle. Let ~yh denote 
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the T-invariant subspace spanned by the vectors that are in the first halves of 
Jordan chains of T corresponding to eigenvalues of T on the unit circle. 
From Proposition 7.3 it follows that No is J,-neutral and I,-neutral. 

THEOREM 7.4. Assume (A, B) is controllable, A is invertible, R > 0, 
and Q 2 0. Then there is a one-one correspondence between the set of all 
A-invariant subspaces JY contained in V, and the set of all nonnegative 
Hermitian solutions X of (7.1). More precisely, let N be such a subspace. and 
let & be given by 

A%= P*JyiJt’, i-[(J,P*fl)’ m%?(T,C,,)]. 

Then 

.k=Im g 
( 1 

(7.5) 

(7.6) 

for a nonnegative Herrnitian solution X of (7.1). Conversely, assume X is a 
nonnegative Hermitian solution of (7.11, and let J be as in (7.6). Then 

& n 9(T, a=,,,) = P*Jtrf or some A-invariant subspace JV contained in V, . 

Proof. Assume Jlr is A-invariant and contained in V; . Clearly, P*Jt/’ is 
T-invariant and both Jr-neutral and ],-neutral. Assume x I J, P*J for some 
x E C2”. Using Ji = T*flT and TP*N= P*N, it follows that TX I II P*Jy 
Hence <Ji P*N)’ ’ IS T-invariant. We conclude that the subspace d is (7.5) is 
T-invariant, J,-neutral, and J,-nonnegative. Due to Proposition 7.1, them 
exists a nonnegative solution X of (7.1) such that (7.6) holds. 

Conversely, assume X is nonnegative solution of (7.11, and let k’ be the 
subspace from (7.6). S’ mce A is J,-nonnegative and J,-neutral and S(T, @,,,,,I 
is J,-nonpositive, it follows that the T-invariant subspace _& n 9?(T, Cc,,,,,) is 
both J,-neutral and J,-neutral. Consider some arbitrary vector 

From equation (1.6) and X > 0 it follows that Xx = 0. Hence &?’ n 
R(T, @o,,t) = P*N, where .&‘= P(J n 9(T, a,,,,,,)). For any x E YV the vec- 
tor 

TP*r = 
(A + BR-‘B*A-*Q)x 

-A- *Qx 
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is also in L% n 9&T, Co,,) = P*& Hence -A-*Qx = 0. Therefore Qx = 0 
and TP*x = P*Ax. It follows that Ax E N Thus N is A-invariant and 
contained in V, . ??

If, moreover, the pair (Q, A) is observable, then 7, = (0) and it follows 
directly from the above theorem that there is only one nonnegative solution 
of (7.0, which is well known. In that case, this solution is the maximal 
solution. 

The following lemma gives a direct connection between a nonnegative 
solution X of (7.1) and the A-invariant subspace M contained in V, that is 
associated with X according to the one-one correspondence given in Theo- 
rem 7.4. 

LEMMA 7.5. Assume (A, B) is controllable, A is invertible, R > 0, and 
Q 2 0. Zf X is a nonnegative solution of (7.1) and Jlr is the subspace 
associated with X according to the one-one correspondence given in Theo- 
rem 7.4, then 

Ker X = Ys 4.N. 

Proof. Assume X is a nonnegative solution of (7.1), and let L be the 
T-invariant J,-neutral J,-nonnegative subspace of (7.6). Recall that .N= 
P(.M n L%T, C,,,>>. From Theorem 7.4 it follows directly that 

(Ker X) n 7, =JK t 7.7) 
Assume x E Ker X. Then P*x E M. Clearly P*x is J,-neutral. Also TP*x is 
in the T-invariant subspace 4. Since T is J,-contractive, we have 

&TP*x, TP*x) I (J2 P*x, P*x> = 0. 

On the other hand, L is J,-nonnegative, so (J2TP*x, TP*x) = 0. Hence 
P*x E Ker(J, - T*J2T), and from (7.3) it follows that Qx = 0. Hence 
TP*x = P*Ax from the definition of T. Evidently P*Ax E J%. From (7.6) it 
follows that Ax E Ker X. Hence Ker X is A-invariant and Ker X c Y'"= 
Vs i 7, . From (7.7) it follows that Ker X c Y, -k.K 

Conversely, assume x E z/, iJu: If x E N, then r E Ker X due to 
(7.7). Assume x1, . . . , xk is a Jordan chain of A contained in Y;cr . Let 
x ,, = 0. We have Axj = hxj + xj_i for some IAl I 1 and j = 1, . . . . k. 
Assume xi _ 1 E Ker X for some j E (1,. . . , k}. The Riccati equation (7.1) 
gives 

<aj, xj) = lAj’( X+ xj) + ]A[“(( R + B*XB)-1 B*Xxj, B*&j). 
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Here X is nonnegative and (R + B*XB)-i is positive, since R is positive. If 
IAl < I, it follows directly that X_rj = 0. If IhI = 1, then we only have 
B*tij = 0. The latter, combined with (7.1), gives Xr, = A A*Xxj. Using the 
controllability of (A, B), we conclude that &,j = 0. By induction it follows 
that VS c Ker X. ??

The partial ordering of the set of nonnegative solutions is similar to the 
partial ordering of A-invariant subspaces contained in V> , just as it is the 
case in Theorem 5.1. 

THEOREM 7.6. Assume (A, B) is controllable, A is invertible, R > 0. 
and Q 2 0. Let X, and X, be two nonnegative solutions c>f (7.1). Let M, and 

N2 be the A-invariant subspaces associated with X, and X,, respec-tivrhy, 
according to the one-one correspondence of Theorem 7.4. Then X, 2 X, if 
and only if4 CN2. 

Proof. Let 

Recall that Jy; = &‘(A1 f’ 9(T, a=,,,,,>> and N2 = P(J2 f’ W(T, C,,,,,)). As- 
sume Xi 2 X,. For any x E JV~ the vector P*x E S’(T, C)out) and x E 
Ker Xi according to Lemma 7.5. From X, I X, and X, being nonnegative 
it follows that ( X,x, x) = 0 and x E Ker X,. Hence P*x E M2 n 
9’Cf, G,,,,,) and x E N2. 

Conversely, assume N, CN2. For some arbitrary s E @” consider the 
vector 

Let X, E P(J2 n 9(T, C,,)) be the vector for which 

From Theorem 7.4 we know that all vectors of A2 n 9(T, C,,,,,) have the 
form P* y for some y E Ker X,. Exactly analogously, the same can be 
proved for vectors of ~a; see the second part of the proof of Theorem 7.4. 
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Hence p*(x - x,) E [A2 n AXT,@,,,)I 4x0 and x - x+E Jy^z 4 P-J’&, 
and X,(x - x+) = 0. Recall that M,, fl SP(T, C,> = (]1p*H2)’ m(T, @in) 
and ~~ n &T, C,) = <JIP*Jy;)’ nSTT, @in>* From the assumption-4 C 

JY, it follows that 

Hence X, x+ = X, x+ and X,x+ E Im X, = (Ker X,)’ . It follows that 

=(X,(x-x+),(x-x+)) 20. 

Hence X, 2 X,. ??

The isolated nonnegative solutions can be described as in Theorem 5.2. 

THEOREM 7.7. Assume (A, B) is controllable, A is invertible, R > 0 
and Q 2 0. Let X be a nonnegative Hermitian solution of (7.1). Let 

and let .M = P(M n S(T, C,,,)). Then the following are equivalent: 

(i) X is an isolated nonnegative Hermitian solution of (7.1); 
(ii) _& is isolated within the set of T-invariant subspaces that are 

maximal J,-neutral and J,-nonnegative; 
(iii) & n S’(T, Gout) is isolated within the set of subspaces of 9(T, @,,,) 

that are T-invariant and ],-neutral; 
(iv) J is isolated within the set of A-invariant subspaces contained in 

7, ; 
(v) for eve y eigenvalue A of Alv, with dim Kel( Alv-> - A) > 1, either 

_Nn ST A, A) = {O} or 93 A, A) n 7, c Jy; 
(vi) for every eigenualue A of Aly, with dim Kel( Alv, - A) > 1, either 

Ker X n .9( A, A) = IO) or 9% A, A) n V, c Ker X. 
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Proof The proof is exactly analogous to the proof of Theorem 5.2 ??

A nonnegative Hermitian solution X, of (7.1) is called stably nonnegu- 
tive if for every E > 0 there is a 6 > 0 such that IIA - Aill + I/B - B,ll 
+llQ - Qill + 1111 - Rill < 6 and R*, = R,, Q, 2 0 imply that the alge- 
braic Riccati equation 

X = ATXA, + Qr - A;XB,(R, + BTXB,))LB;XA, 

has a nonnegative Hermitian sohition X, such that 11X, - X,/I < E. 

THEOREM 7.8. Assume (A, B) is controllable, A is invertible, Q 2 0, 
and R > 0. Then the only stably nonnegative solution of (7.1) is the maximal 
solution. 

Proof. To prove that the maximal solution is a stably nonnegative 
solution, proceed analogously to the proof of Theorem 5.4. To show that the 
other nonnegative solutions are not stably nonnegative solutions, use the 
perturbation QF = Q + ~1. Then QE > 0 and the pair (Q,, A) is observable. 
The perturbed equation has only one nonnegative solution that converges to 
the maximal solution of (7.1). ??

8. INERTIA OF HERMITIAN SOLUTIONS FOR THE DISCRETE 
ALGEBRAIC RICCATI EQUATION 

Finally, we study the inertia of a general Hermitian solution to the 
discrete algebraic Riccati equation (7.1). In Proposition 7.1 the set of Hermi- 
tian solutions is characterized by the set of n-dimensional T-invariant J,- 
neutral subspaces. For studying the inertia we will use a slightly different 
characterization. 

PROPOSITION 8.1. Assume (A, B) is controllable, A is invertible, Q 2 0. 
and R > 0. Every T-invariant J,-neutral subspace .k’> contained in 
S’(T, C,,,,,) is of the form 

(8.1) 
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for som Hemitian solution X of (7.1). Conversely, if X is a Hermitian 
solution of (7.1), then the subspace J, constructed as in (8.1) is T-invariant 
and J,-neutral. 

Proof. Starting with a T-invariant ],-neutral subspace M, contained in 
9(T, a=,,,>, construct 

where NO is the span of the first halves of all the Jordan chains of T 
corresponding to unimodular eigenvalues. Then apply Proposition 7.1. 

Conversely, starting with a Hermitian solution X, apply Proposition 
7.1 to get the T-invariant J,-neutral subspace A, and let A, =A n 
L%‘(T, Gout). ??

Let X be some Hermitian solution to the equation (7.1). Let AZ, be the 
T-invariant II-neutral subspace that corresponds to X according to the above 
proposition. Let .I& be the span of the first halves of all the Jordan chains of 
T corresponding to unimodular eigenvalues. Let A< = (JIA,)’ 
n9(T, a=,). Then M = M, iNO iA< is n-dimensional, T-invariant, and 

J,-neutral, and according to Proposition 7.1 

From Proposition 7.3, recall that A, is J,-nonpositive, NO is J,-neutral, and 
A@~ is J,-nonnegative. The J,-neutral parts AY: = (Jz&>)’ nJ, and 
4: = &A<)’ f--U< of 4, and A< will be considered. 

PROPOSITION 8.2 (From [8, Lemma 2.11). The subspaces AZ and A<” 
are T-invariant. 

Proof. From A, cS(T, cOut) it follows that T~J, is invertible. For 
any x E A: we have 

Hence (TI,,)-’ x is ],-neutral. Since A> is a Jz-nonpositive subspace, it 
follows that J2(T ( A, )-lx Id, . Hence (Tln,)-l%: CA: . The dimension 
of the left-hand side cannot be smaller than the dimension of the right-hand 
side. Therefore (TlAn,)-lA2 = Mz and A0 = TM: . > 
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For x E JY: we have 

0 I (J2Tx,Tx> 5 <Jzx, x) = 0. 

Hence TX is J,-neutral. Since M< is J,-nonnegative, it follows that 
JeZ’x 1.4, . Hence TX E A<” . ??

The three subspaces M; , Ho,, and M,” are T-invariant, J,-neutral, and 
J,-neutral. One of the aims of this section is to show that the sum of their 
dimensions equals the dimension of the kernel of X. 

LEMMA 8.5. Assume (A, B) is controllable, A is invertible, Q 2 0, 
and R > 0. Then for any T-invariant, ],-neutral, J,-neutral subspace 
M the projection on the second coordinate (0 Z)M= 0, and moreover, 
(I OLVC Y. 

Proof. For any 

it follows from (7.3) that Qx = 0 and B*A* -’ y = 0. Hence 

Tk( 5) = [(A:k:,kyj 
for x = 1,2,. . . . Hence x E Y and B*(A*)k( A*-‘)“y = 0 for k = 
0, 1, . . . ) n - 1. The controllability of ( A, B) gives that ( A* _ ‘)” y = 0. Hence 
y = 0. ??

From the above lemma if follows that PM: , PJyb, and P-H; are 
contained in Ker X. On the other hand it follows that M: C P*V, , Jv, C 
P*“tO, and _&; c P*V, . Combining, we have JZ: C P*%‘I< n-4, 4, C 
P *VO n &, and _,@ c P* V, f-w. The subspace P* 7 is T-invariant and 
J,-neutral, and therefore also the inverse inclusions hold, so that we have 

(8.2) 
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For a Hermitian solution X of (7.1) let us denote by T(V) the number of 
positive (negative) eigenvalues of X, multiplicities taken into account, and let 
6 = dim Ker X. 

THEOREM 8.4. Assume (A, B) is controllable, A is invertible, Q 2 0, 
and R > 0. Let X be a Hermitian solution to (7.1), and let M be as in (7.4). 
Then 

r= dim[Jn S(T,@,,)] - dim(An P*Y<), 

V= dim[&n S(T,C,,,)] - dim(&fI P*V,), 

6 = dim(_&n P*V). 

Proof. The vectors in the subspace M< e&j are strictly J,-positive, 
and the vectors in the subspace J%, ~L&‘,O are strictly J,-negative. From (1.6) 
it follows that the subspaces P(A< Q.&) and P(&, ed,O> are strictly 
X-positive and X-negative, respectively. Hence m 2 dim(A< @A:> and 
Y 2 dim(A, e_&:). From the definition of & it follows that the subspace 
P(P*yn A) is contained in Ker X. Hence S 2 dim(P*yn A). From (8.2) 
it follows that the three lower bounds add up to n, which is the number of 
eigenvalues of X. Hence the lower bounds give the exact numbers of 
negative and positive eigenvalues of X and of dim Ker X. ??

COROLLARY 8.5. Assume (A, B) is controllable, A is invertible, Q 2 0, 
and R > 0. For any Hermitian solution X of (7.1) the inertia IT, u, 6 satisfies 
T I dim 3&T, C,), v 5 dim 9(T, Cant), and 6 2 $ dim Z(T,T). 
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