1,205 research outputs found

    Overlaps after quantum quenches in the sine-Gordon model

    Get PDF
    We present a numerical computation of overlaps in mass quenches in sine-Gordon quantum field theory using truncated conformal space approach (TCSA). To improve the cut-off dependence of the method, we use a novel running coupling definition which has a general applicability in free boson TCSA. The numerical results are used to confirm the validity of a previously proposed analytical Ansatz for the initial state in the sinh-Gordon quench.Comment: 13 pages, 4 pdf figure

    Initial states in integrable quantum field theory quenches from an integral equation hierarchy

    Get PDF
    We consider the problem of determining the initial state of integrable quantum field theory quenches in terms of the post-quench eigenstates. The corresponding overlaps are a fundamental input to most exact methods to treat integrable quantum quenches. We construct and examine an infinite integral equation hierarchy based on the form factor bootstrap, proposed earlier as a set of conditions deter- mining the overlaps. Using quenches of the mass and interaction in Sinh-Gordon theory as a concrete example, we present theoretical arguments that the state has the squeezed coherent form expected for integrable quenches, and supporting an Ansatz for the solution of the hierarchy. Moreover we also develop an iterative method to solve numerically the lowest equation of the hierarchy. The iterative solution along with extensive numerical checks performed using the next equation of the hierarchy provide a strong numerical evidence that the proposed Ansatz gives a very good approximation for the solution.Comment: 36 pages, pdflatex file, 11 pdf figures. v2: revised version, accepted for publicatio

    Bacterial degradation of polychlorinted biphenyls in sludge from an industrial sewer lagoon

    Get PDF
    A laboratory experiment was conducted to determine if polychlorinated biphenyls (PCB's) found in an industrial sewer sludge can be effectively degraded by mutant bacteria. The aerated sludge was inoculated daily with mutant bacteria in order to augment the existing bacteria with bacteria that were considered to be capable of degrading PCB's. The pH, nitrogen, and phosphorus levels were monitored daily to maintain an optimum growing medium for the bacteria. A gas chromatographic method was used to determine the PCB concentrations of the sludge initially and also throughout the experiment. Results and discussion of the bacterial treatment of polychlorinated biphenyls are presented

    Bessie on the Board Walk

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/4685/thumbnail.jp

    Documentation of the GLAS fourth order general circulation model. Volume 2: Scalar code

    Get PDF
    Volume 2, of a 3 volume technical memoranda contains a detailed documentation of the GLAS fourth order general circulation model. Volume 2 contains the CYBER 205 scalar and vector codes of the model, list of variables, and cross references. A variable name dictionary for the scalar code, and code listings are outlined

    Documentation of the GLAS fourth order general calculation model. Volume 3: Vectorized code for the Cyber 205

    Get PDF
    Volume 3 of a 3-volume technical memoranda which contains documentation of the GLAS fourth order genera circulation model is presented. The volume contains the CYBER 205 scalar and vector codes of the model, list of variables, and cross references. A dictionary of FORTRAN variables used in the Scalar Version, and listings of the FORTRAN Code compiled with the C-option, are included. Cross reference maps of local variables are included for each subroutine

    Exact Maximal Height Distribution of Fluctuating Interfaces

    Full text link
    We present an exact solution for the distribution P(h_m,L) of the maximal height h_m (measured with respect to the average spatial height) in the steady state of a fluctuating Edwards-Wilkinson interface in a one dimensional system of size L with both periodic and free boundary conditions. For the periodic case, we show that P(h_m,L)=L^{-1/2}f(h_m L^{-1/2}) for all L where the function f(x) is the Airy distribution function that describes the probability density of the area under a Brownian excursion over a unit interval. For the free boundary case, the same scaling holds but the scaling function is different from that of the periodic case. Numerical simulations are in excellent agreement with our analytical results. Our results provide an exactly solvable case for the distribution of extremum of a set of strongly correlated random variables.Comment: 4 pages revtex (two-column), 1 .eps figure include
    • …
    corecore