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Abstract

We present a numerical computation of overlaps in mass quenches in sine-Gordon
quantum field theory using truncated conformal space approach (TCSA). To improve
the cut-off dependence of the method, we use a novel running coupling definition which
has a general applicability in free boson TCSA. The numerical results are used to confirm
the validity of a previously proposed analytical Ansatz for the initial state in the sinh-
Gordon quench.

1 Introduction
One of the most challenging problems in contemporary physics is the understanding of dy-
namical and relaxation phenomena in closed quantum systems out of equilibrium. Motivated
by both theoretical interest and experimental relevance, recent studies led to a series of in-
teresting discoveries such as the experimental observation of the lack of thermalization in
integrable systems [1, 2, 3, 4]. To explain the stationary state of integrable quantum sys-
tems, the concept of the generalized Gibbs ensemble (GGE) was proposed [5], and recently
experimentally confirmed [6]. It also turned out that the GGE was generally incomplete
when only including the well-known local conserved charges [7, 8], and its completion made
necessary the inclusion of novel quasi-local charges [9, 10]. Adding to this the unconventional,
often ballistic nature of quantum transport [11, 12] or the confinement effects in the spread
of correlations in non-integrable systems [13] indeed, a remarkable range of exotic behaviour
has emerged in recent years.

A paradigmatic framework for non-equilibrium dynamics is provided by quantum quenches
[14], in which the initial state (which is typically the ground state of some pre-quench Hamilto-
nian H0) is subject to evolution driven by a post-quench Hamiltonian H, which is obtained
from H0 by instantaneously changing some parameters of the system. For the purpose of
computing the time evolution it is useful to know the overlaps, i.e. the amplitudes of the
post-quench excitations in the initial state. Indeed, in the case of integrable post-quench
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dynamics, knowledge of these overlaps often enables the determination of steady state prop-
erties, and even the time evolution [15, 16, 17, 18, 19]. However, the determination of the
overlaps is generally a very difficult task. When both the pre-quench and post-quench theor-
ies are non-interacting, the overlaps can be determined using the Bogoliubov transformation
linking the pre- and post-quench excitation modes, but in genuinely interacting integrable
models there are only few cases in which the overlaps are explicitly known. These cases
mostly include spin chains and the Lieb-Liniger model [20, 21, 22, 24, 23, 25].

Quantum field theories are known to provide universal descriptions of statistical models
and many-body systems, valid at long distances, and therefore quantum quenches in field
theories are interesting, especially in the quest for universal characteristics and behaviour
under quantum quenches. In massive relativistic integrable quantum field theories there exists
a number of efficient approaches to the quench dynamics, which depend on the assumption
that the initial state |Ψ(0)〉 can be written in a squeezed vacuum form in terms of post-
quench Zamolodchikov-Faddeev creation operators Z†a(ϑ) for asymptotic particle states and
the post-quench vacuum |0〉

|Ψ(0)〉 = N exp

ˆ
dϑ

2π
Ka,b(ϑ)Z†a(−ϑ)Z†b (ϑ)|0〉 , (1.1)

which is just the analogue of the Bogoliubov solution for free theories. The above form of
the initial state is equivalent to the statement that the multi-particle creation amplitudes
factorize into products of independent single pair creation amplitudes. This is obviously
reminiscent of the factorisation property of scattering in integrable quantum field theories
[26], which justifies calling this class of quenches “integrable”. Such a form of the initial state
enables the application of methods based on thermodynamic Bethe Ansatz (TBA) [15, 16, 17],
form factor based spectral expansions [27, 28] or semi-classical approach [18]. However, even
within the class of integrable quenches no exact solutions are known for the overlap functions
Ka,b apart from non-interacting quantum field theory models.

Recently an Ansatz for the overlaps was proposed for the quench from a massive free
boson to an interacting sinh-Gordon model [29, 30], which has already been used to obtain
predictions for steady state expectation values [31]. The aim of the present work is to provide
a test of this solution from first principles, by comparing their analytical continuation to
sine-Gordon theory to a direct evaluation of the overlaps in the framework of the Truncated
Conformal Space Approach (TCSA), originally introduced in [32] and extended to the sine-
Gordon model in [33].

2 Overlaps in quantum field theory quenches

2.1 The sinh-Gordon quench overlaps and their continuation to
sine-Gordon

The work [30] considered a quench from a massive free bosonic theory with particle mass m0

to the massive sinh-Gordon theory

A =

ˆ
d2x

(
1

2
∂µΦ∂µΦ− µ2

g2
cosh gΦ

)
, (2.1)

with coupling g and physical particle mass m (which is equal to µ in the classical limit). For
these quenches it was argued that the initial state can be cast into the exponential form
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|Ψ(0)〉 = N exp

{ˆ
dϑ

2π
K(ϑ)Z†(−ϑ)Z†(ϑ)

}
|0〉 . (2.2)

However, properly demonstrating that the initial state has the form (1.1) in terms of post-
quench asymptotic particle states is far from straightforward, and has only been possible in
the non-interacting case (also in some interacting quenches in spin chains and Bose gases,
where the exact overlaps are known and factorize in the thermodynamic limit [20, 21, 22, 24,
23, 25]).

A class of states which has the exponential form is given by so-called integrable boundary
states introduced in [34]; however, they cannot be considered physical initial states since they
are not normalizable. As shown in [14, 35] it is possible to construct proper initial states in
terms of a boundary state |B〉 using the form

|Ψ(0)〉 = e−
∑
τiQi |B〉

where the Qi are local conserved charges. Assuming that (as usual) the one-particle states
are eigenstates of the Qi, this obviously preserves the exponential form of the state, but it
is hard to identify the physical quench (i.e. the pre-quench Hamiltonian H0) that results in
this state for a particular choice of the real parameters τi.

For quenches starting from a large initial mass in the sinh-Gordon field theory arguments
in favour of the exponential form were advanced in [29], and even the following Ansatz was
proposed for the function K:

K(ϑ) = Kfree(ϑ)KD(ϑ) , (2.3)

where Kfree(ϑ) is given by

Kfree(ϑ) =
E0(ϑ)− E(ϑ)

E0(ϑ) + E(ϑ)
, E(ϑ) = m coshϑ , E0(ϑ) =

√
m2

0 +m2 sinh2 ϑ ,

and is identical (up to a sign) with the Bogoliubov amplitude in a mass quench m0 −→ m
within a free bosonic model, while KD(ϑ) is the amplitude of the Dirichlet boundary (Φ = 0)
state in sinh-Gordon theory:1

KD(ϑ) = i tanh(ϑ/2)
cosh (ϑ/2− iπB/8) sinh(ϑ/2 + iπ(B + 2)/8)

sinh (ϑ/2 + iπB/8) cosh(ϑ/2− iπ(B + 2)/8)
, B(g) =

2g2

8π + g2
.

(2.4)
In the follow-up work [30] it was shown that provided the initial state contains only multiple
particle states composed of pairs with opposite momenta, extensivity of the charges guaran-
teeing integrability leads to factorisation of multi-pair amplitudes and therefore results in an
exponential form of the state, the only undetermined parameter being the pair creation amp-
litudes Ka,b(ϑ). However, the pair structure itself remains mainly an assumption supported
only by some heuristic arguments [30].

Furthermore an infinite integral equation hierarchy was derived that determines (at least
in principle) the full form of the initial state in terms of the post-quench multi-particle states
for the quenches from a free massive boson to the the sinh-Gordon model, and it was further

1KD can be obtained by analytic continuation from the first breather boundary amplitude in sine-Gordon
theory which was obtained in [36].
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shown that the simple Ansatz (2.3) was a very good numerical solution of the lowest member
of the hierarchy provided the exponential form of the initial state was assumed. In addition,
the next member of the hierarchy was used for a numerical test of the factorisation assumption
itself, which worked well within the limitations of the numerics.

Continuing to imaginary couplings g = iβ results in sine-Gordon theory

A =

ˆ
d2x

(
1

2
∂µΦ∂µΦ +

µ2

β2
cos βΦ

)
, (2.5)

and it is useful to introduce ξ = β2/(8π − β2) = −B/2. The fundamental excitations are
a doublet of soliton/antisoliton of mass M . In the attractive regime (ξ < 1) the spectrum
also contains breathers Br (soliton-antisoliton bound states) with masses mr = 2M sin rπξ/2
with r a positive integer less than ξ−1. Due to integrability, the exact factorized S matrix
is also known [26]. Under the analytic continuation to imaginary couplings the sinh-Gordon
particle corresponds to the first breather B1, which can be supported both by perturbation
theory and the correspondence between the respective S matrix amplitudes. As a result, form
factors of local operators and reflection factors containing only the first breather B1 are also
identical to the corresponding sinh-Gordon quantities under the same analytic continuation,
which are all known in the model.

Here we consider sine-Gordon quenches which correspond to abruptly changing the soliton
massM0 →M while leaving the interaction strength ξ unaltered in the Hamiltonian H asso-
ciated with (2.5). Note that under the analytic continuation this is related to a mass quench
within sinh-Gordon theory with a fixed coupling g, while the Ansatz (2.3) was obtained
for a quench from a free boson to sinh-Gordon theory. However, provided the interaction
in the initial Hamiltonian does not play a significant role, we can expect that an analytic
continuation

KB1B1(ϑ) =
E0(ϑ)− E(ϑ)

E0(ϑ) + E(ϑ)
KD(ϑ) (2.6)

KD(ϑ) = i tanh

(
ϑ

2

)
cosh

(
ϑ
2

+ iπξ
4

)
sinh

(
ϑ
2
− iπξ

4

) sinh
(
ϑ
2

+ iπ(1−ξ)
4

)
cosh

(
ϑ
2
− iπ(1−ξ)

4

)
gives a good approximation to the first breather pair creation amplitude in the sine-Gordon
mass quench. We shall return to the issue of the initial interaction later when discussing the
numerical results. Note that the amplitude depends only on the quench mass ratio, which is
the same for each particle species since ξ is fixed, so we substituted the first breather mass
by the soliton mass.

2.2 Overlaps in finite volume

In our numerical calculation we consider the system in a finite volume L with periodic bound-
ary conditions, therefore we briefly recall the theory of finite size dependence of boundary
state amplitudes, worked out in [37]. To keep the formulas short, we consider only one spe-
cies of particles as the generalization to more than one species is rather obvious. Denoting
the pre-quench ground state by |B〉, the most general expansion in terms of the post-quench
eigenstates is
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|B〉 = |0〉+
∞∑
n=1

ˆ n∏
i=1

d ϑi
2π

Kn(ϑ1, ...ϑn)δ

(
n∑
i=1

m sinhϑi

)
|ϑ1, ..., ϑn〉 , (2.7)

while in finite volume one obtains

|B〉L = |0〉L +
∞∑
n=1

′∑
I1,...In

NnKn(ϑ∗1, ...ϑ
∗
n)|I1, ..., In〉L , (2.8)

where {ϑ∗i } are the solutions of the Bethe-Yang equations, i.e. the system

Qi = mL sinhϑi +
n∑

j=1,6=i

δ(ϑi − ϑj) = 2πIi , i = 1, ..., n, (2.9)

where δ(ϑ) = −i lnS(ϑ) is the phase-shift corresponding to the two particle S-matrix S(ϑ),
m is the physical mass of the particle and Ii are the quantum numbers that characterize the
finite volume states, with the prime meaning that only zero momentum states are included.
In [37] the Nn functions were explicitly determined

Nn(ϑ∗1, ...ϑ
∗
n) =

√
ρn(ϑ∗1, ...ϑ

∗
n)

ρ̄n−1(ϑ∗1, ...ϑ
∗
n−1)

+O(e−µ
′L) , (2.10)

where ρn is the density of states given by the Bethe-Yang Jacobi determinant [38]

ρn = det

{
∂Qk

∂ϑj

}
j,k=1,...,n

whereas ρ̄n−1 is the so-called reduced density of states which takes into account momentum
conservation and is computed as the Jacobian

ρ̄n−1 = det

{
∂Q̄k

∂ϑj

}
j,k=1,...,n−1

of the constrained Bethe-Yang equations

Q̄i = mL sinhϑi +
n−1∑
j=1, 6=i

δ(ϑi − ϑj) + δ(ϑi − ϑ̃) = 2πIi , i = 1, ..., n− 1 , (2.11)

ϑ̃ = − sinh−1(
n−1∑
i=1

sinhϑi)

Formula (2.10) is exact to all orders in the inverse volume L−1 as indicated by correction
terms that decay exponentially with the volume with some characteristic scale µ′ (cf. [38]).

For the case when the expansion of the initial state in terms of the post-quench eigenstates
only contains paired states

|B〉 = |0〉+
∞∑
n=1

ˆ n∏
i=1

d ϑi
2π

Kn(ϑ1, ...ϑn)| − ϑ1, ϑ1...,−ϑn, ϑn〉 , (2.12)

the appropriate constrained Bethe-Yang equations are
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Q̄p
i = mL sinhϑi + δ(2ϑi) +

∑
j 6=i

δ(ϑi − ϑj) + δ(ϑi + ϑj) = 2πIi , i = 1, ..., n , (2.13)

with solution {ϑ∗i }, and the finite volume expansion is

|B〉L = |0〉L +
∞∑
n=1

∑
I1,...In

Nn(ϑ∗1, ...ϑ
∗
n)Kn(ϑ∗1, ...ϑ

∗
n)| − I1, I1...,−In, In〉L , (2.14)

with the Nn functions [37]

Nn(ϑ∗1, ...ϑ
∗
n) =

√
ρ2n(−ϑ∗1, ϑ∗1...− ϑ∗n, ϑ∗n)

ρ̄pn(ϑ∗1, ...ϑ
∗
n)

+O(e−µ
′L) , ρ̄pn = det

{
∂Q̄p

k

∂ϑj

}
j,k=1,...,n

. (2.15)

3 Overlaps from TCSA

3.1 TCSA for the sine-Gordon mass quench

We now turn to studying sine-Gordon mass quenches in truncated conformal space approach
(TCSA), following the ideas in [39] which applied a similar approach to Ising field theory.
For sine-Gordon, TCSA consists of representing the model as a compactified free massless
boson conformal field theory (CFT) perturbed by a relevant operator, with the Hamiltonian

H =

ˆ
dx

1

2
: (∂tΦ)2 + (∂xΦ)2 : −λ

2

ˆ
dx (V1 + V−1) (3.1)

Va =: eiaβΦ :

where the semicolon denotes normal ordering in terms of the massless scalar field modes. In
a finite volume L, the spectrum of the free boson CFT is discrete and can be truncated to a
finite subspace by introducing an upper cut-off ecut in terms of the eigenvalue of the dilatation
operator (which gives the energy in conformal units). Physical energies and volumes can be
expressed in units of the soliton mass using the relation

λ =
2Γ(∆)

πΓ(1−∆)

(√
πΓ
(

1
2−2∆

)
M

2Γ
(

∆
2−2∆

) )2−2∆

, ∆ =
β2

8π
(3.2)

so that the dimensionless volume variable and Hamiltonian can be defined as l = ML and
h = H/M , respectively. For more details on the sine-Gordon TCSA the interested reader is
referred to [33].

The initial state corresponds to the ground state of the same Hamiltonian (3.1) with
λ replaced by λ0 corresponding to M0. When considering the post-quench evolution in
dimensionless volume l = ML, implementing the quench means using the ground state
computed in the rescaled volume l0 = M0l/M [39].

The cut-off dependence of TCSA can be (partially) eliminated using renormalisation group
methods [40, 41, 42]. Here we used a modified version of the running coupling prescription
in [43]. We can write an effective Hamiltonian in the form

Heff =

ˆ
dx

1

2
: (∂tΦ)2 + (∂xΦ)2 : +λ0I +

λ1

2

ˆ
dx (V1 + V−1) +

λ2

2

ˆ
dx (V2 + V−2)

6



where we included counter terms generated at leading order according to the fusion rules
VaVb ∼ Va+b. Introducing the dimensionless couplings

λ̃a =
λaL

2−2ha

(2π)1−2ha
ha =

a2β2

8π

the running couplings λ̃i are determined by the RG equations

λ̃c(n)− λ̃c(n− 1) =
1

2n− d0(l)

∑
a,b

λ̃a(n)λ̃b(n)Cc
ab

n2habc−2

Γ(habc)2
(1 +O(1/n)) (3.3)

where n is the cut-off expressed in conformal levels, Cc
ab is the operator product coefficient,

habc = ha + hb − hc and d0(l) is the vacuum scaling function (cf. [43]). At the lowest order
it is only necessary to run the couplings λ0 and λ2, from their starting values λ0 = 0 and
λ2 = 0 at n =∞.

The couplings must be run following (3.3) down from n = ∞ to the appropriate value
of ncut corresponding to the given cut-off ecut. It must be taken into account that the
c = 1 Hilbert space is spanned by Fock modules Fa created from the vacuum by Va and the
Hamiltonian is block-diagonal in terms of the Fock modules, symbolically:

H0 + I V1 V2

V−1 H0 + I V1 V2

V−2 V−1 H0 + I V1 V2

. . . . . . . . . . . . . . .
V−2 V−1 H0 + I V1 V2

V−2 V−1 H0 + I V1

V−2 V−1 H0 + I


and the eventual value of ncut depends on the block one considers. Namely, when computing
the coefficient of the block V2 between Fa and Fa+2, the intermediate states in the OPE
V1V1 ∼ V2 are from Fa+1 which determines the level ncut appropriate for the given block, and
similarly for V−2 between Fa and Fa−2 ncut is fixed from Fa−1. For the identity term between
Fa and Fa there are two possible intermediate modules Fa±1, so the identity coupling must
be split into two pieces λ0±, each of them running down to the appropriate ncut determined
by the highest level in Fa±1.

The block-dependent running coupling corresponds to including a non-local counter term.
The fact that such counter terms are necessary was noted in [44]; they account for 1/n
corrections in the running coupling. In the sine-Gordon there is a large 1/n effect resulting
from the fact that the cut-off level is heavily module dependent, ranging from ecut in Fock
module F0 to 0 for the Fock modules with the largest indices F±amax . The consistency of this
scheme was verified by numerically checking the cut-off dependence of the 15 lowest-lying
levels in the TCSA spectrum, which proved to be negligible with this method.

3.2 The B1 −B1 pair amplitude

Now we turn to numerical results for the B1−B1 pair amplitudes and compare them with the
infinite volume prediction (2.6). The first task is to identify states corresponding to B1−B1

pairs in the numerical spectrum of the post-quench Hamiltonian. Solving the constrained
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Bethe-Yang system (2.13) one obtains the possible rapidities from which the energy levels can
be computed. However, apart from the lowest lying levels, the identification is not feasible
by merely comparing the TCSA and the Bethe-Yang energies due the density of the TCSA
spectrum. This issue can be overcome by supplementing the energy selection procedure with
a comparison of the finite volume form factors of the fields V1 and V2 obtained using the
formalism developed in [38], to the TCSA matrix elements (for an exposition of how this
works in sine-Gordon theory cf. [45]). As the form factors depend sensitively on the particle
content of the state, the identification can unambiguously be performed.

1.0 1.5 2.0
θ

0.05

0.10

0.15

0.20

0.25

0.30
K

(a) R = 2.3, M/M0 = 0.5, M0L = 55, ecut = 24
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(b) R = 2.3, M/M0 = 0.75, M0L = 40, ecut = 22

0.5 1.0 1.5 2.0
θ
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0.04

0.06

0.08

0.10

0.12

0.14

K

(c) R = 2.3, M/M0 = 1.5, M0L = 22, ecut = 24

0.5 1.0 1.5 2.0
θ

0.05

0.10

0.15

0.20

0.25

0.30

K

(d) R = 2.0, M/M0 = 0.5, M0L = 50, ecut = 24

Figure 3.1: The pair amplitude for some mass quenches in sine-Gordon theory. The sine-
Gordon coupling β is parametrized as β =

√
4π/R. The blue (continuous) curves correspond

to the sine-Gordon Ansatz (2.6), and the red (dashed) ones to the free theory solutions.

Having identified the proper states in the set of numerical eigenstates the numerical over-
laps can be obtained from their scalar product with the initial state, divided by the vacuum
overlap to eliminate the normalization factor N in (2.2). As the TCSA matrix elements of
the perturbing operator are real numbers, all the numerically computed eigenvectors are also
real, corresponding to a specific convention for the phases of the post-quench eigenstates.
Therefore the phase of the overlap function K(ϑ) is absent from the data, so after normal-
izing the TCSA overlap values with the inverse of (2.15) we compare their modulus to the
value obtained from (2.6). This comparison is shown in Fig. 3.1 for a few of the quenches
we considered; the conclusion is that it works well except in the low energy range, and that
both the free particle and the Dirichlet parts of the analytic formula (2.6) are important.
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Rapidities ϑ∗1, ϑ∗2 BY energy TCSA energy Normalized overlap Factorized prediction
{0.671828, 1.44047} 1.13089 1.13133 0.0255928 0.0244265
{0.651971, 1.72849} 1.34668 1.34742 0.0168602 0.0162507
{1.19428, 1.70726} 1.51794 1.51918 0.0108541 0.0108043
{0.642841, 1.95028} 1.56712 1.56853 0.0117727 0.0113951
{0.637471, 2.1315} 1.73764 1.79245 0.0083998 0.0083603

(a) R = 2.3, M/M0 = 0.5, M0L = 55, ecut = 24

Rapidities ϑ∗1, ϑ∗2 BY energy TCSA energy Normalized overlap Factorized prediction
{0.549607, 1.22608} 1.33758 1.33916 0.0296001 0.0278547
{0.524061, 1.51576} 1.56955 1.57217 0.0139780 0.0195048
{1.03577, 1.48932} 1.74274 1.74686 0.0142756 0.0149960
{0.512645, 1.73741} 1.80847 1.81308 0.0137404 0.0141252
{1.00938, 1.72497} 1.98019 1.98813 0.0130837 0.0108970

(b) R = 2.0, M/M0 = 0.5, M0L = 50, ecut = 24

Rapidities ϑ∗1, ϑ∗2 BY energy TCSA energy Normalized overlap Factorized prediction
{0.618879, 1.36023} 1.60354 1.60489 0.00454695 0.00344512
{0.599521, 1.64559} 1.89691 1.89943 0.00292898 0.00219769
{1.12225, 1.62472} 2.12314 2.12725 0.00176750 0.00132404
{0.590723, 1.866} 2.19785 2.20287 0.00203194 0.00150384
{1.10091, 1.85633} 2.42300 2.43139 0.00128401 0.00091002

(c) R = 2.3, M/M0 = 0.75, M0L = 40, ecut = 22

Table 3.1: Overlaps for 4-B1 paired states | − ϑ∗1, ϑ
∗
1,−ϑ∗2, ϑ∗2〉. The sine-Gordon coupling

β is parametrized as β =
√

4π/R. To eliminate differences in phase conventions of energy
eigenstates the modulus of the overlaps is reported.

Deviations in the low energy range can be attributed to two sources. First, the initial
state is different from the free massive vacuum for which (2.6) (or more precisely, its sinh-
Gordon counterpart (2.3)) was obtained. However, the difference is the presence of a relevant
perturbation in the pre-quench Hamiltonian, which affects most the low-lying modes due to
its relevance. Second, when modelling the finite size effects in Section 2 we used a formalism
that neglects exponential corrections in the volume, which normally affect the lower lying
states more. Unfortunately, it is not easy to separate these effects, and so we cannot say
anything more definite about the low-energy behaviour. However, the analytically continued
solution (2.6) definitely provides a good description of the amplitudes in the mid-to-high
energy range.

3.3 Amplitudes for 4 B1 particles and factorization

Once the amplitude K(ϑ) is pinned down, all higher overlaps are determined by the expo-
nential form of the state. This entails the factorisation property which states that states
which do not have an exclusive pair structure in terms of particles have zero overlap, and for
paired states the overlap is just equal to the product of individual pair state overlaps.

Another prediction from factorization is that the overlaps for paired 4-B1 states is the
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product of pair overlaps. This is also consistent with the TCSA data as shown in Table 3.1.
For the quenches in sub-tables (a) and (b), the overlaps are large enough so that one can
observe a quantitative agreement between the predictions of (2.6) and the TCSA results. For
the example in sub-table (c), the overlap is too small to be measured and the agreement is
only qualitative.

The question is whether this constitutes a non-trivial test of overlap factorization? Note
that when the quench is small factorization is expected to be valid to a very good approxim-
ation. A small quench means that the average energy density E after the quench satisfies

E =
1

L
(〈Ψ(0)|H|Ψ(0)〉 − 〈0|H|0〉)� m2

1

with respect to the mass of the lightest particle m1. In such a case the density of even the
lightest pairs is so small that the average distance d between pairs is much larger than the
correlation length m−1

1 . Since the interactions are suppressed by the distance as e−m1d, the
multi-pair amplitudes are expected to factorize irrespective of integrability when the quench
is small.

We evaluated E for all the quenches for which we could produce reliable TCSA data and
found that d was at least an order of magnitude larger than m−1

1 , therefore all observed
deviations from factorization are expected to be TCSA related (either truncation errors or
unmodeled finite size effects). Indeed, when testing the overlaps for non-paired 4-B1 states,
they proved to be an order of magnitude smaller than the overlaps for paired states, and
were of the same order as the deviations between the prediction (2.6) and the measured
two-particle overlap, which is consistent with factorization.

4 Conclusions
In this paper we studied mass quenches in the sine-Gordon integrable quantum field theory
in the attractive regime, in particular, we numerically determined the two-particle overlaps
for the B1 breathers in the finite volume theory with a periodic boundary condition. The
main results of our paper is the verification an Ansatz (2.3) and the exponential form of
the initial state (1.1) proposed in [29, 30] for quenches from the free bosonic theory to the
interacting sinh-Gordon theory. Based on the well-known analytic continuation between the
sine- and sinh-Gordon theories, the numerical overlaps were compared with the Ansatz. The
numerical data points and the theoretical curve were found to match very well in the middle
and high energy range, with some quantitative deviations in the low energy part which can be
attributed to initial state interactions and finite size effects. These results confirm the validity
of the sinh-Gordon Ansatz, whose original derivation relied on the assumption that the initial
state contains only multiple particle states composed of pairs with opposite momenta, which
lacks rigorous justification at this moment.

For the numerical determination of the overlaps the truncated conformal space approach
was used. To improve upon the usual renormalization group treatment of TCSA [40, 41, 42],
we added non-local counter terms that dominate the next order corrections in the inverse
energy cut-off. Whereas in general, the construction of such non-local terms is difficult, in
sine-Gordon TCSA it is easy to implement this correction and the accuracy of the numerical
spectrum can be substantially improved.

As a closing remark, it has to be mentioned that the quantum sine-Gordon theory is
a very interesting model in its own right, attracting a lot of attention due to its theoret-
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ical tractability and experimental relevance. Quenches in sine-Gordon theory have recently
become realizable in experimental setups, describing the evolution of the relative phase of
trapped and coupled condensates of cold atoms [46]. The knowledge of the pair amplitudes in
(1.1) is crucial for the computation of steady state one- and two-point functions by currently
available techniques [18, 28], and the method presented in this paper provides a direct way
to the numerical determination of the pair overlaps. Indeed, in addition to the B1 overlaps
presented here, our method can be used to extract pair amplitudes for higher breathers and
soliton-antisoliton pairs. In this work we refrained from reporting the corresponding numer-
ical data, since at present we have no theoretical description for them. The understanding of
these overlaps, which is important for a full description of sine-Gordon quenches, is relegated
to future works.
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