302 research outputs found

    KINEMATIC ANALYSIS OF THE UPPER LIMB AT DIFFERENT IMPACT HEIGHTS IN BASEBALL BATTING

    Get PDF
    The purpose of this study was to investigate the change in the upper limb motion to three different hitting areas of the strike zone: high, middle, and low. Subjects were ten right-handed male skilled batters of a university baseball team. Data were collected using a three dimensional automatic motion analysis system (Vicon 612). The joint angles of the upper limbs were computed. Comparison of the hitting in the high area vs. low area revealed that to hit the ball in the low area the batter more extended his left elbow, and flexed more his both shoulders and horizontal adduction angle of the left shoulder was large at the phase of the Left upper arm parallel (LUP). At the impact phase he flexed his left elbow more, adduction angle of the left shoulder was small in the case of the high area than the case of the low area. The opposite tendency to the high area was observed in the case of the low area

    Luminous superclusters: remnants from inflation

    Full text link
    We derive the luminosity and multiplicity functions of superclusters compiled for the 2dF Galaxy Redshift Survey, the Sloan Digital Sky Survey (Data Release 4), and for three samples of simulated superclusters. We find for all supercluster samples Density Field (DF) clusters, which represent high-density peaks of the class of Abell clusters, and use median luminosities/masses of richness class 1 DF-clusters to calculate relative luminosity/mass functions. We show that the fraction of very luminous (massive) superclusters in real samples is more than tenfolds greater than in simulated samples. Superclusters are generated by large-scale density perturbations which evolve very slowly. The absence of very luminous superclusters in simulations can be explained either by non-proper treatment of large-scale perturbations, or by some yet unknown processes in the very early Universe.Comment: 6 pages, 3 Figures, submitted for Astronomy and Astrophysic

    Steps toward the power spectrum of matter. III. The primordial spectrum

    Full text link
    Observed power spectrum of matter found in Papers I and II is compared with analytical power spectra. Spatially flat cold and mixed dark matter models with cosmological constant and open models are considered. The primordial power spectrum of matter is determined using the power spectrum of matter and the transfer functions of analytical models. The primordial power spectrum has a break in amplitude. We conclude that a scale-free primordial power spectrum is excluded if presently available data on the distribution of clusters and galaxies represent the true mass distribution of the Universe.Comment: LaTex (sty files added), 22 pages, 5 PostScript figures embedded, Astrophysical Journal (accepted

    Superclusters of galaxies from the 2dF redshift survey. I. The catalogue

    Full text link
    We use the 2dF Galaxy Redshift Survey data to compile catalogues of superclusters for the Northern and Southern regions of the 2dFGRS, altogether 543 superclusters at redshifts 0.009 < z < 0.2. We analyse methods of compiling supercluster catalogues and use results of the Millennium Simulation to investigate possible selection effects and errors. We find that the most effective method is the density field method using smoothing with an Epanechnikov kernel of radius 8 Mpc/h. We derive positions of the highest luminosity density peaks and find the most luminous cluster in the vicinity of the peak, this cluster is considered as the main cluster and its brightest galaxy the main galaxy of the supercluster. In catalogues we give equatorial coordinates and distances of superclusters as determined by positions of their main clusters. We also calculate the expected total luminosities of the superclusters.Comment: 16 pages, 11 figures, submitted for Astronomy and Astrophysics. High-resolution pdf file and supplementary data can be found at http://www.aai.ee/~maret/2dfscl.htm

    Superclusters of galaxies from the 2dF redshift survey. II. Comparison with simulations

    Get PDF
    We investigate properties of superclusters of galaxies found on the basis of the 2dF Galaxy Redshift Survey, and compare them with properties of superclusters from the Millennium Simulation. We study the dependence of various characteristics of superclusters on their distance from the observer, on their total luminosity, and on their multiplicity. The multiplicity is defined by the number of Density Field (DF) clusters in superclusters. Using the multiplicity we divide superclusters into four richness classes: poor, medium, rich and extremely rich. We show that superclusters are asymmetrical and have multi-branching filamentary structure, with the degree of asymmetry and filamentarity being higher for the more luminous and richer superclusters. The comparison of real superclusters with Millennium superclusters shows that most properties of simulated superclusters agree very well with real data, the main differences being in the luminosity and multiplicity distributions.Comment: 15 pages, 13 Figures, submitted for Astronomy and Astrophysic

    Clusters and Superclusters in the Las Campanas Redshift Survey

    Full text link
    Two-dimensional high-resolution density field of galaxies of the Las Campanas Redshift Survey (LCRS) with a smoothing length 0.8 Mpc/h is used to extract clusters and groups of galaxies, and a low-resolution field with a smoothing length 10 Mpc/h to find superclusters of galaxies. Properties of these density field (DF) clusters and superclusters are studied and compared with the properties of Abell clusters and superclusters, and LCRS loose groups. We calculate the DF-cluster luminosity function, and show that most luminous clusters in high-density environments are about ten times brighter than most luminous clusters in low-density environments. We present a catalogue of DF-superclusters and show that superclusters that contain Abell clusters are richer and more luminous than superclusters without Abell clusters. A pdf file of the paper with high-resolution figures is available in Tartu Observatory web-site (http://www.aai.ee/~maret/cosmoweb.html)Comment: 19 pages LaTeX text, 15 PostScript Figures, submitted to Astronomy and Astrophysic

    The supercluster-void network; 2, An oscillating cluster correlation function

    Get PDF
    We use rich clusters of galaxies in the Northern and Southern Galactic hemispheres up to a redshift z=0.12 to determine the cluster correlation function. We show that superclusters of galaxies and voids between them form a moderately regular network. As a result the correlation function determined for clusters located in rich superclusters oscillates: it has a series of regularly spaced secondary maxima and minima. The scale of the supercluster-void network, determined from the period of oscillations, is P=115 Mpc. The amplitude of oscillations is about 3 times larger than the estimated error. We compare the observed cluster correlation function with similar functions derived for popular models of structure formation. We find that the production of the observed cluster correlation function in any model with a smooth transition of the power spectrum from a Harrison-Zeldovich regime with positive spectral index on long wavelengths to a negative spectral index on short wavelengths is highly unlikely. The power spectrum must have an extra peak located at the wavelength equal to the period of oscillations of the correlation function

    Steps toward the power spectrum of matter. I.The mean spectrum of galaxies

    Full text link
    We calculate the mean power spectrum of galaxies using published power spectra of galaxies and clusters of galaxies. On small scales we use the power spectrum derived from the 2-dimensional distribution of APM galaxies, on large scales we use power spectra derived from 3-dimensional data for galaxy and cluster samples. Spectra are reduced to real space and to the amplitude of the power spectrum of APM galaxies. Available data indicate the presence of two different populations in the nearby Universe. Clusters of galaxies sample a relatively large region in the Universe where rich, medium and poor superclusters are well represented. Their mean power spectrum has a spike on scale 120 h^{-1}Mpc, followed by an approximate power-law spectrum of index n = -1.9 towards small scales. The power spectrum found from LCRS and IRAS 1.2 Jy surveys is flatter around the maximum, which may represent regions of the Universe with medium-rich and poor superclusters.Comment: LaTex (sty files added), 35 pages, 5 PostScript figures and Table with mean power spectrum embedded, Astrophysical Journal (accepted

    A 120-Mpc Periodicity in the Three-Dimensional Distribution of Galaxy Superclusters

    Get PDF
    Using a new compilation of available data on galaxy clusters and superclusters we present evidence for a quasiregular three-dimensional network of rich superclusters and voids, with the regions of high density separated by about 120 Mpc. We calculate the power spectrum for clusters of galaxies; it has a peak on the wavelength equal to the step of the network; the excess in the amplitude of the spectrum over that of the cold dark matter model is by a factor of 1.4. The probability that the spectrum can be formed within the framework of the standard cosmogony is very small. If the cluster distribution reflects the distribution of all matter (luminous and dark), then there must exists some hithero unknown process that produces regular structure on large scales.Comment: Tex, 6 pages, 2 PostScript figures embedded, accepted by Nature on November 19, 199

    Superclusters of galaxies in the 2dF redshift survey. III. The properties of galaxies in superclusters

    Get PDF
    We use catalogues of superclusters of galaxies from the 2dF Galaxy Redshift Survey to study the properties of galaxies in superclusters. We compare the properties of galaxies in high and low density regions of rich superclusters, in poor superclusters and in the field, as well as in groups, and of isolated galaxies in superclusters of various richness. We show that in rich superclusters the values of the luminosity density smoothed on a scale of 8 \Mpc are higher than in poor superclusters: the median density in rich superclusters is ή≈7.5\delta \approx 7.5, in poor superclusters ή≈6.0\delta \approx 6.0. Rich superclusters contain high density cores with densities ή>10\delta > 10 while in poor superclusters such high density cores are absent. The properties of galaxies in rich and poor superclusters and in the field are different: the fraction of early type, passive galaxies in rich superclusters is slightly larger than in poor superclusters, and is the smallest among the field galaxies. Most importantly, in high density cores of rich superclusters (ή>10\delta > 10) there is an excess of early type, passive galaxies in groups and clusters, as well as among those which do not belong to groups or clusters. The main galaxies of superclusters have a rather limited range of absolute magnitudes. The main galaxies of rich superclusters have larger luminosities than those of poor superclusters and of groups in the field. Our results show that both the local (group/cluster) environments and global (supercluster) environments influence galaxy morphologies and their star formation activity.Comment: 13 pages, 10 figures, submitted to Astronomy and Astrophysic
    • 

    corecore