2,266 research outputs found

    Sodium bicarbonate supplementation does not improve elite women's team sport running or field hockey skill performance

    Get PDF
    Team sports, such as field hockey, incorporate high‐intensity repeated sprints, interspersed with low‐intensity running, which can result in acidosis. The aim of the present study was to examine the effect of acute sodium bicarbonate (SB) supplementation on team sport running and skill performance. Eight elite female field hockey players (age 23 ± 5 years, body mass 62.6 ± 8.4 kg, height 1.66 ± 0.05 m) completed three Field Hockey Skill Tests (FHST) interspersed with four sets of the Loughborough Intermittent Shuttle Test (LIST). Prior to exercise, participants were supplemented with capsules equivalent to 0.2 g·kg−1 body mass (BM) of a placebo (maltodextrin) or 0.3 g·kg−1 BM SB. Field hockey skill performance incorporated overall performance time (PFT), movement time (MT), decision‐making time (DMT), and penalty time (PT). Sprint time (ST), rating of perceived exertion (RPE), blood lactate concentration, bicarbonate anion (urn:x-wiley:2051817X:media:phy213818:phy213818-math-0001) concentration, pH, and base excess were measured at various time points. Data (mean ± SD) were analyzed using a two‐way analysis of variance (ANOVA) with repeated measures, with Hedges g effect sizes used to interpret the magnitude of differences. Bicarbonate anion concentration (+5.4 ± 2.6 mmol·L−1) and pH (+0.06 ± 0.03) were greater during the bicarbonate trial compared with the placebo (P 0.30) or ST (placebo: 2.87 ± 0.12 sec; bicarbonate: 2.86 ± 0.12 sec, P = 0.893, g = −0.08). RPE was lower during the SB condition (placebo: 13 ± 2; bicarbonate: 12 ± 2, P = 0.021, g = −0.41). Acute ingestion of bicarbonate did not improve sprint or sport‐specific skill performance. Bicarbonate ingestion did result in a lower perception of effort during team‐sport running, which may have performance implications in a competitive match situation

    Surgical management of posterior fossa metastases

    Get PDF
    The diagnosis of brain metastases is associated with a poor prognosis reflecting uncontrolled primary disease that has spread to the relative sanctuary of the central nervous system. 20 % of brain metastases occur in the posterior fossa and are associated with significant morbidity. The risk of acute hydrocephalus and potential for sudden death means these metastases are often dealt with as emergency cases. This approach means a full pre-operative assessment and staging of underlying disease may be neglected and a proportion of patients undergo comparatively high risk surgery with little or no survival benefit. This study aimed to assess outcomes in patients to identify factors that may assist in case selection. We report a retrospective case series of 92 consecutive patients operated for posterior fossa metastases between 2007 and 2012. Routine demographic data was collected plus data on performance status, primary cancer site, details of surgery, adjuvant treatment and survival. The only independent positive prognostic factors identified on multivariate analysis were good performance status (if Karnofsky performance score >70, hazard ratio (HR) for death 0.36, 95 % confidence interval (CI) 0.18–0.69), adjuvant whole brain radiotherapy (HR 0.37, 95 % CI 0.21–0.65) and adjuvant chemotherapy where there was extracranial disease and non-synchronous presentation (HR 0.51, 95 % CI 0.31–0.82). Patients presenting with posterior fossa metastases may not be investigated as thoroughly as those with supratentorial tumours. Staging and assessment is essential however, and in the meantime emergencies related to tumour mass effect should be managed with steroids and cerebrospinal fluid diversion as required

    Artificial neural networks and player recruitment in professional soccer

    Get PDF
    The aim was to objectively identify key performance indicators in professional soccer that influence outfield players’ league status using an artificial neural network. Mean technical performance data were collected from 966 outfield players’ (mean SD; age: 25 ± 4 yr, 1.81 ±) 90-minute performances in the English Football League. ProZone’s MatchViewer system and online databases were used to collect data on 347 indicators assessing the total number, accuracy and consistency of passes, tackles, possessions regained, clearances and shots. Players were assigned to one of three categories based on where they went on to complete most of their match time in the following season: group 0 (n = 209 players) went on to play in a lower soccer league, group 1 (n = 637 players) remained in the Football League Championship, and group 2 (n = 120 players) consisted of players who moved up to the English Premier League. The models created correctly predicted between 61.5% and 78.8% of the players’ league status. The model with the highest average test performance was for group 0 v 2 (U21 international caps, international caps, median tackles, percentage of first time passes unsuccessful upper quartile, maximum dribbles and possessions gained minimum) which correctly predicted 78.8% of the players’ league status with a test error of 8.3%. To date, there has not been a published example of an objective method of predicting career trajectory in soccer. This is a significant development as it highlights the potential for machine learning to be used in the scouting and recruitment process in a professional soccer environment

    Effect of ambient temperature during acute aerobic exercise on short-term appetite, energy intake, and plasma acylated ghrelin in recreationally active males

    Get PDF
    Ambient temperature during exercise may affect energy intake regulation. Compared with a temperate (20 °C) environment, 1 h of running followed by 6 h of rest tended to decrease energy intake from 2 ad libitum meals in a hot (30 °C) environment but increase energy intake in a cool (10 °C) environment (p = 0.08). Core temperature changes did not appear to mediate this trend; whether acylated ghrelin is involved is unclear. Further research is warranted to clarify these findings

    Radiative Extinction of Gaseous Spherical Diffusion Flames in Microgravity

    Get PDF
    Radiative extinction of spherical diffusion flames was investigated experimentally and numerically. The experiments involved microgravity spherical diffusion flames burning ethylene and propane at 0.98 bar. Both normal (fuel flowing into oxidizer) and inverse (oxidizer flowing into fuel) flames were studied, with nitrogen supplied to either the fuel or the oxygen. Flame conditions were chosen to ensure that the flames extinguished within the 2.2 s of available test time; thus extinction occurred during unsteady flame conditions. Diagnostics included color video and thin-filament pyrometry. The computations, which simulated flow from a porous sphere into a quiescent environment, included detailed chemistry, transport and radiation, and yielded transient results. Radiative extinction was observed experimentally and simulated numerically. Extinction time, peak temperature, and radiative loss fraction were found to be independent of flow rate except at very low flow rates. Radiative heat loss was dominated by the combustion products downstream of the flame and was found to scale with flame surface area, not volume. For large transient flames the heat release rate also scaled with surface area and thus the radiative loss fraction was largely independent of flow rate. Peak temperatures at extinction onset were about 1100 K, which is significantly lower than for kinetic extinction. One observation of this work is that while radiative heat losses can drive transient extinction, this is not because radiative losses are increasing with time (flame size) but rather because the heat release rate is falling off as the temperature drops

    A Computational Investigation of Sooting Limits of Spherical Diffusion Flames

    Get PDF
    Limiting conditions for soot particle inception in spherical diffusion flames were investigated numerically. The flames were modeled using a one-dimensional, time accurate diffusion flame code with detailed chemistry and transport and an optically thick radiation model. Seventeen normal and inverse flames were considered, covering a wide range of stoichiometric mixture fraction, adiabatic flame temperature, and residence time. These flames were previously observed to reach their sooting limits after 2 s of microgravity. Sooting-limit diffusion flames with residence times longer than 200 ms were found to have temperatures near 1190 K where C/O = 0.6, whereas flames with shorter residence times required increased temperatures. Acetylene was found to be a reasonable surrogate for soot precursor species in these flames, having peak mole fractions of about 0.01

    Effects of Lewis Number on Temperatures of Spherical Diffusion Flames

    Get PDF
    Spherical diffusion flames supported on a porous sphere were studied numerically and experimentally. Experiments were performed in 2.2 s and 5.2 s microgravity facilities. Numerical results were obtained from a Chemkin-based program. The program simulates flow from a porous sphere into a quiescent environment, yields both steady-state and transient results, and accounts for optically thick gas-phase radiation. The low flow velocities and long residence times in these diffusion flames lead to enhanced radiative and diffusive effects. Despite similar adiabatic flame temperatures, the measured and predicted temperatures varied by as much as 700 K. The temperature reduction correlates with flame size but characteristic flow times and, importantly, Lewis number also influence temperature. The numerical results show that the ambient gas Lewis number would have a strong effect on flame temperature if the flames were steady and nonradiating. For example, a 10% decrease in Lewis number would increase the steady-state flame temperature by 200 K. However, for these transient, radiating flames the effect of Lewis number is small. Transient predictions of flame sizes are larger than those observed in microgravity experiments. Close agreement could not be obtained without either increasing the model s thermal and mass diffusion properties by 30% or reducing mass flow rate by 25%

    Effects of C/O Ratio and Temperature on Sooting Limits of Spherical Diffusion Flames

    Get PDF
    Limiting conditions for soot particle inception in spherical diffusion flames were investigated numerically. The flames were modeled using a one-dimensional, time accurate diffusion flame code with detailed chemistry and transport and an optically thick radiation model. Seventeen normal and inverse flames were considered, covering a wide range of stoichiometric mixture fraction, adiabatic flame temperature, residence time and scalar dissipation rate. These flames were previously observed to reach their sooting limits after 2 s of microgravity. Sooting-limit diffusion flames with scalar dissipation rate lower than 2/s were found to have temperatures near 1400 K where C/O = 0.51, whereas flames with greater scalar dissipation rate required increased temperatures. This finding was valid across a broad range of fuel and oxidizer compositions and convection directions

    A re-appraisal of the reliability of the 20 m multi-stage shuttle run test

    Get PDF
    This is the author's PDF version of an article published in European journal of applied physiology in 2007. The original publication is available at www.springerlink.co

    Emulation of Condensed Fuel Flames Using a Burning Rate Emulator (BRE) in Microgravity

    Get PDF
    The Burning Rate Emulator (BRE) is a gaseous fuel burner developed to emulate the burning of condensed phase fuels. The current study details several tests at the NASA Glenn 5-s drop facility to test the BRE technique in microgravity conditions. The tests are conducted for two burner diameters, 25 mm and 50 mm respectively, with methane and ethylene as the fuels. The ambient pressure, oxygen content and fuel flow rate are additional parameters. The microgravity results exhibit a nominally hemispherical flame with decelerating growth and quasi-steady heat flux after about 5 seconds. The BRE burner was evaluated with a transient analysis to assess the extent of steady-state achieved. The burning rate and flame height recorded at the end of the drop are correlated using two steady-state purely diffusive models. A higher burning rate for the bigger burner as compared to theory indicates the significance of gas radiation. The effect of the ambient pressure and oxygen concentration on the heat of gasification are also examined
    corecore