1,283 research outputs found
Effect of Aging on Taut Rubber Diaphragms
As part of an investigation of special compositions of rubber suitable for use as diaphragms for aircraft instruments, six samples were used as taut diaphragms in instruments and allowed to age for five years. Two of the instruments were in operating condition after this period of time and one had remarkably little change in performance. In making the rubber tetraethyl thorium disulfide was employed as a vulcanizing agent
Terminal Proterozoic cyanobacterial blooms and phosphogenesis documented by the Doushantuo granular phosphorites II: Microbial diversity and C isotopes
An unprecedented period of phosphogenesis, along with massive deposition of black shales, major perturbations in the global carbon cycle and the rise of atmospheric oxygen, occurred in the terminal Proterozoic in the aftermath of the Marinoan glaciation. Although causal links between these processes have been postulated, evidence remains challenging. Correlated in situ micro-analyses of granular phosphorites from the Ediacaran Doushantuo Formation in Yichang, South China, suggested that cyanobacteria and associated extracellular polymeric substances (EPS) might have promoted aggregated granule growth and subsequent phosphatization (She et al., 2013). Here, we present new paleontological data for the Doushantuo phosphorites from Yichang, which, combined with Raman microspectroscopy and carbon isotope data, further document links between the biology of cyanobacteria and phosphogenesis. Mapping of microfossils in thin section shows that most phosphatic granules contain microfossils that are dominated by colonies of Myxococcoides, along with several filamentous genera generally considered to represent cyanobacterial sheaths. In addition, the phosphorites and associated rocks have δ13Corg values in the range of −26.0 to −29.7‰ VPDB, consistent with photoautotrophic carbon fixation with the Rubisco enzyme. Close association of phosphorites with the Marinoan tillites in stratigraphic level supports a genetic link between deglaciation and phosphogenesis, at least for the Doushantuo occurrence. Our new data suggest that major cyanobacterial blooms probably took place in the terminal Proterozoic, which might have resulted in rapid scavenging of bioavailable phosphorus and massive accumulations of organic matter (OM). Within a redox-stratified intra-shelf basin, the OM-bound phosphorus could have liberated by microbial sulfate reduction and other anaerobic metabolisms and subsequently concentrated by Fe-redox pumping below the chemocline. Upwelling of the bottom waters or upward fluctuation of the chemocline might have brought P-enriched waters to the photic zone, where it was again scavenged by cyanobacteria through their EPS to be subsequently precipitated as francolite. The feedbacks between enhanced continental weathering, cyanobacterial blooms, carbon burial, and accelerated phosphorus cycle thus controlled the marine biogeochemical changes, which led to further oxygenation of the atmosphere and oceans, ultimately paving the way for the rise of metazoans
On Chiral Symmetry Restoration at Finite Density in Large N_c QCD
At large N_c, cold nuclear matter is expected to form a crystal and thus
spontaneously break translational symmetry. The description of chiral symmetry
breaking and translational symmetry breaking can become intertwined. Here, the
focus is on aspects of chiral symmetry breaking and its possible restoration
that are by construction independent of the nature of translational symmetry
breaking---namely spatial averages of chiral order parameters. A system will be
considered to be chirally restored provided all spatially-averaged chiral order
parameters are zero. A critical question is whether chiral restoration in this
sense is possible for phases in which chiral order parameters are locally
non-zero but whose spatial averages all vanish. We show that this is not
possible unless all chirally-invariant observables are spatially uniform. This
result is first derived for Skyrme-type models, which are based on a nonlinear
sigma model and by construction break chiral symmetry on a point-by-point
basis. A no-go theorem for chiral restoration (in the average sense) for all
models of this type is obtained by showing that in these models there exist
chirally symmetric order parameters which cannot be spatially uniform. Next we
show that the no-go theorem applies to large N_c QCD in any phase which has a
non-zero but spatially varying chiral condensate. The theorem is demonstrated
by showing that in a putative chirally-restored phase, the field configuration
can be reduced to that of a nonlinear sigma model.Comment: 12 pages, 1 tabl
Fragments of the earliest land plants
The earliest fossil evidence for land plants comes from microscopic dispersed spores. These microfossils are abundant and widely distributed in sediments, and the earliest generally accepted reports are from rocks of mid-Ordovician age (Llanvirn, 475 million years ago). Although distribution, morphology and ultrastructure of the spores indicate that they are derived from terrestrial plants, possibly early relatives of the bryophytes, this interpretation remains controversial as there is little in the way of direct evidence for the parent plants. An additional complicating factor is that there is a significant hiatus between the appearance of the first dispersed spores and fossils of relatively complete land plants (megafossils): spores predate the earliest megafossils (Late Silurian, 425 million year ago) by some 50 million years. Here we report the description of spore-containing plant fragments from Ordovician rocks of Oman. These fossils provide direct evidence for the nature of the spore-producing plants. They confirm that the earliest spores developed in large numbers within sporangia, providing strong evidence that they are the fossilized remains of bona fide land plants. Furthermore, analysis of spore wall ultrastructure supports liverwort affinities
Modeling Sitagliptin Effect on Dipeptidyl Peptidase 4 (DPP4) Activity in Adults with Hematological Malignancies After Umbilical Cord Blood (UCB) Hematopoietic Cell Transplant (HCT)
Background and Objectives—
Dipeptidyl peptidase-4 (DPP4) inhibition is a potential strategy
to increase the engraftment rate of hematopoietic stem/progenitor cells. A recent clinical trial
using sitagliptin, a DPP4 inhibitor approved for type 2 diabetes mellitus, has shown to be a
promising approach in adults with hematological malignancies after umbilical cord blood (UCB)
hematopoietic cell transplant (HCT). Based on data from this clinical trial, a semi-mechanistic
model was developed to simultaneously describe DPP4 activity after multiple doses of sitagliptin
in subjects with hematological malignancies after a single-unit UCB HCT.
Methods—
The clinical study included 24 patients that received myeloablative conditioning
followed by 4 oral sitagliptin 600mg with single-unit UCB HCT. Using a nonlinear mixed effects
approach, a semi-mechanistic pharmacokinetic/pharmacodynamic model was developed to
describe DPP4 activity from this trial data using NONMEM 7.2. The model was used to drive
Monte-Carlo simulations to probe various dosage schedules and the attendant DPP4 response.
Results—
The disposition of sitagliptin in plasma was best described by a 2-compartment model.
The relationship between sitagliptin concentration and DPP4 activity was best described by an
indirect response model with a negative feedback loop. Simulations showed that twice a day or
three times a day dosage schedules were superior to once daily schedule for maximal DPP4
inhibition at the lowest sitagliptin exposure.
Conclusion—
This study provides the first pharmacokinetic/pharmacodynamic model of
sitagliptin in the context of HCT, and provides a valuable tool for exploration of optimal dosing
regimens, critical for improving time to engraftment in patients after UCB HCT
T cells from patients with Candida sepsis display a suppressive immunophenotype
BACKGROUND: Despite appropriate therapy, Candida bloodstream infections are associated with a mortality rate of approximately 40 %. In animal models, impaired immunity due to T cell exhaustion has been implicated in fungal sepsis mortality. The purpose of this study was to determine potential mechanisms of fungal-induced immunosuppression via immunophenotyping of circulating T lymphocytes from patients with microbiologically documented Candida bloodstream infections. METHODS: Patients with blood cultures positive for any Candida species were studied. Non-septic critically ill patients with no evidence of bacterial or fungal infection were controls. T cells were analyzed via flow cytometry for cellular activation and for expression of positive and negative co-stimulatory molecules. Both the percentages of cells expressing particular immunophenotypic markers as well as the geometric mean fluorescence intensity (GMFI), a measure of expression of the number of receptors or ligands per cell, were quantitated. RESULTS: Twenty-seven patients with Candida bloodstream infections and 16 control patients were studied. Compared to control patients, CD8 T cells from patients with Candidemia had evidence of cellular activation as indicated by increased CD69 expression while CD4 T cells had decreased expression of the major positive co-stimulatory molecule CD28. CD4 and CD8 T cells from patients with Candidemia expressed markers typical of T cell exhaustion as indicated by either increased percentages of or increased MFI for programmed cell death 1 (PD-1) or its ligand (PD-L1). CONCLUSIONS: Circulating immune effector cells from patients with Candidemia display an immunophenotype consistent with immunosuppression as evidenced by T cell exhaustion and concomitant downregulation of positive co-stimulatory molecules. These findings may help explain why patients with fungal sepsis have a high mortality despite appropriate antifungal therapy. Development of immunoadjuvants that reverse T cell exhaustion and boost host immunity may offer one way to improve outcome in this highly lethal disorder. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13054-016-1182-z) contains supplementary material, which is available to authorized users
New observations of Ambient Inclusion Trails (AITs) and pyrite framboids in the Ediacaran Doushantuo Formation, South China
Ambient Inclusion Trails (AITs) are intriguing microtubular structures that commonly occur in association with pyrite in Precambrian organic-rich cherts and phosphorites. They are thought to be created by the migration of pyrite or other crystal grains through a lithified substrate driven by pressure solution from the in situ thermal decomposition of organic matter. New phosphorite samples of the Ediacaran Doushantuo Formation (South China) contain abundant AITs exhibiting diverse morphotypes, which may be distinguished from filamentous microfossils and endolithic microborings with a suite of morphological criteria based on optical microscopy and scanning electron microscopy (SEM). Black shales of the Baizhu section contains abundant pyrite framboids whose size distributions reveal significant temporal variations of redox conditions in shallow marine waters that probably promoted the formation of the Doushantuo phosphorites.
AITs in the phosphorites are categorized into three types and further into five subtypes (I-a, I-b, II-a, II-b, and III) based on their morphologies and observed or interpreted associations with various kinds of terminal pyrite crystals. Among these, subtype II-a, single striated microtubes 2–10 μm wide, are interpreted to have resulted from migration of intact pyrite framboids. Those of subtype II-b, dense clusters of outward radiating microtubes with consistent widths and inward-facing cuspate ridges, likely have formed by explosive disintegration and propulsion of pyrite framboids due to highly concentrated carbon dioxide gas during the oxidation of organic matter. During early diagenesis, formation of euhedral and framboidal pyrites involve a suite of biogeochemical and physical processes including non-biological oxidation of organic matter and reduction of sulfate in the presence of ferrous iron. Following the burial of pyrites, further oxidative degradation of organic matter produced abundant CO2 gas, which drives the pyrites to move through the solid, but not yet fully lithified phosphatic gel composing granules. This model explains the formation of previously reported but unexplained star-burst type AITs and it may be tested by experimental studies.
Our new observations provide evidence for the widespread occurrence of AITs in the Doushantuo phosphorites and urge careful petrographic examinations and differentiation between AITs and morphologically similar biogenic microstructures
Antitrust Damages for Consumer Welfare Loss
Section 4 of the Clayton Act provides that any person who is injured in his business or property by reason of anything forbidden in the antitrust laws shall recover threefold the damages by him sustained. The current private enforcement model usually permits plaintiffs to recover damages based upon the excessive prices charged to consumers. However, economists see the real loss to society from an antitrust violation to be the consumer welfare loss which results from reduced output. The authors have been unable to locate any antitrust case which has permitted recovery of damages for this consumer welfare loss. Therefore, this article addresses the following issues: if consumer welfare loss is the true measure of the damage to society from an antitrust violation, should it be included in a damage recovery; if consumer welfare loss is recoverable, who is the proper party to recover for the loss; and what difficulties are there in measuring such a loss for purposes of awarding damages
Evidence for the Rare Decay B -> K*ll and Measurement of the B -> Kll Branching Fraction
We present evidence for the flavor-changing neutral current decay and a measurement of the branching fraction for the related
process , where is either an or
pair. These decays are highly suppressed in the Standard Model,
and they are sensitive to contributions from new particles in the intermediate
state. The data sample comprises
decays collected with the Babar detector at the PEP-II storage ring.
Averaging over isospin and lepton flavor, we obtain the branching
fractions and , where the
uncertainties are statistical and systematic, respectively. The significance of
the signal is over , while for it is .Comment: 7 pages, 2 postscript figues, submitted to Phys. Rev. Let
High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician
It has been hypothesized that predecessors of today’s bryophytes significantly increased global chemical weathering in the Late Ordovician, thus reducing atmospheric CO2 concentration and contributing to climate cooling and an interval of glaciations. Studies that try to quantify the enhancement of weathering by non-vascular vegetation, however, are usually limited to small areas and low numbers of species, which hampers extrapolating to the global scale and to past climatic conditions. Here we present a spatially explicit modelling approach to simulate global weathering by non-vascular vegetation in the Late Ordovician. We estimate a potential global weathering flux of 2.8 (km3 rock) yr−1, defined here as volume of primary minerals affected by chemical transformation. This is around three times larger than today’s global chemical weathering flux. Moreover, we find that simulated weathering is highly sensitive to atmospheric CO2 concentration. This implies a strong negative feedback between weathering by non-vascular vegetation and Ordovician climate
- …
